

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

TSOKOS LESSON 12-2 NUCLEAR PHYSICS

Essential Idea:

 The idea of discreteness that we met in the atomic world continues to exist in the nuclear world as well.

Nature Of Science:

- Theoretical advances and inspiration: Progress in atomic, nuclear and particle physics often came from theoretical advances and strokes of inspiration.
- Advances in instrumentation: New ways of detecting subatomic particles due to advances in electronic technology were also crucial.

Nature Of Science:

 Modern computing power: Finally, the analysis of the data gathered in modern particle detectors in particle accelerator experiments would be impossible without modern computing power.

Theory Of Knowledge:

- Much of the knowledge about subatomic particles is based on the models one uses to interpret the data from experiments.
- How can we be sure that we are discovering an "independent truth" not influenced by our models?
- Is there such a thing as a single truth?

Understandings:

- Rutherford scattering and nuclear radius
- Nuclear energy levels
- The neutrino
- The law of radioactive decay and the decay constant

Applications And Skills:

- Describing a scattering experiment including location of minimum intensity for the diffracted particles based on their de Broglie wavelength
- Explaining deviations from Rutherford scattering in high energy experiments

Applications And Skills:

- Describing experimental evidence for nuclear energy levels
- Solving problems involving the radioactive decay law for arbitrary time intervals
- Explaining the methods for measuring short and long half-lives

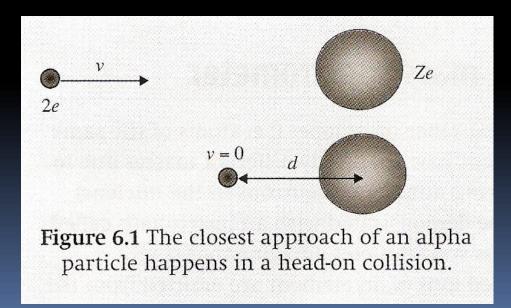
Guidance:

- Students should be aware that nuclear densities are approximately the same for all nuclei and that the only macroscopic objects with the same density as nuclei are neutron stars
- The small angle approximation is usually not appropriate to use to determine the location of the minimum intensity

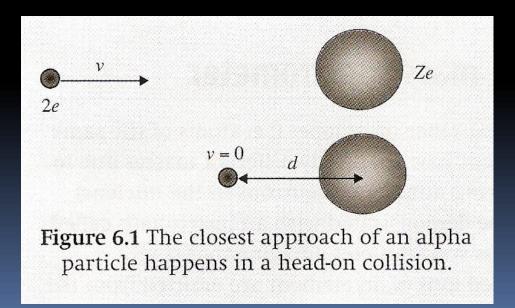
Data Booklet Reference:

•
$$R = R_0 A^{1/3}$$

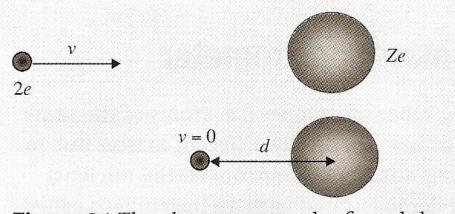
• $N = N_0 e^{-\lambda t}$
• $A = \lambda N_0 e^{-\lambda t}$
• $\sin \theta \approx \frac{\lambda}{D}$


Utilization:

 Knowledge of radioactivity, radioactive substances and the radioactive decay law are crucial in modern nuclear medicine


Aims:

 Aim 2: detection of the neutrino demonstrates the continuing growing body of knowledge scientists are gathering in this area of study


- An alpha particle of charge q=+2e is fired head-on at a nucleus
- The particle's total energy is kinetic, E=E_k

 The particle is repelled by the positive charge of the nucleus

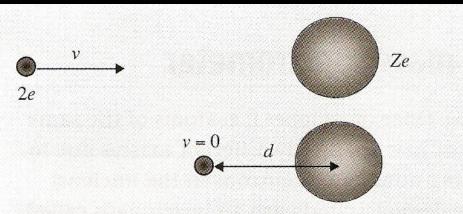

 When the particle stops, all of its kinetic energy has been converted into potential energy

Figure 6.1 The closest approach of an alpha particle happens in a head-on collision.

$$E = k \frac{Qq}{d}$$
$$E = k \frac{(Ze)(2e)}{d}$$
$$E = k \frac{2Ze^{2}}{d}$$

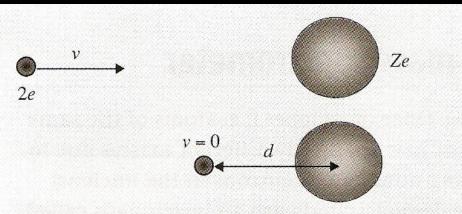

 When the particle stops, all of its kinetic energy has been converted into potential energy

Figure 6.1 The closest approach of an alpha particle happens in a head-on collision.

 $E_{K} = k \frac{2Ze^{2}}{d}$ $d = k \frac{2Ze^2}{E_{\kappa}}$

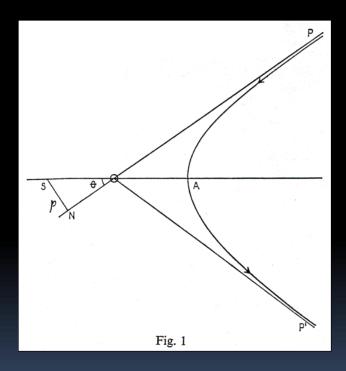

 As kinetic energy of the alpha particle increases, distance decreases until the nuclear radius is reached and obtained

Figure 6.1 The closest approach of an alpha particle happens in a head-on collision.

 $E_{K} = k \frac{2Ze^{2}}{d}$ $d = k \frac{2Ze^2}{E_{\kappa}}$

- Rutherford Scattering
 - <u>http://hyperphysics.phy-</u>
 <u>astr.gsu.edu/hbase/hframe.html</u>
- Closest Approach to Nucleus
 - <u>http://hyperphysics.phy-</u> <u>astr.gsu.edu/hbase/hframe.html</u>
- Nuclear Radius Relationship
 - <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>

 Further experiments have been able to refine the estimates for nuclear radii to be

$$R = 1.2xA^{1/3}x10^{-15}m$$

What this also implies is that all nuclei have roughly the same density

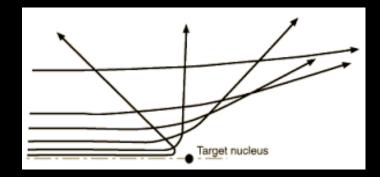
$$R = 1.2xA^{1/3}x10^{-15}m$$

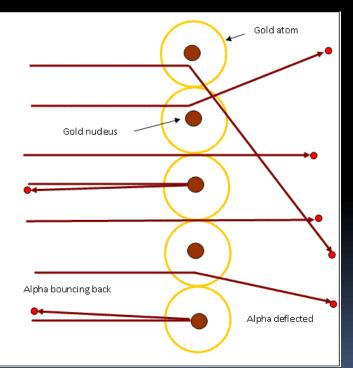
Data Guide:

$$R = R_0 x A^{1/3}$$
$$R_0 = 1.2 x 10^{-15} m$$

Diffraction Experiments

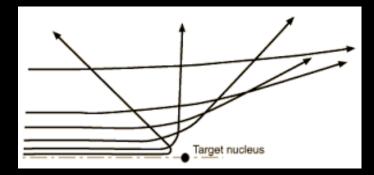
- If a particle has a deBroglie wavelength λ that is on the order of the diameter of a nucleus, it will diffract around it
- The diffraction angle will be where b is the diameter of the diffracting object


$$\sin\theta = \frac{\lambda}{b}$$

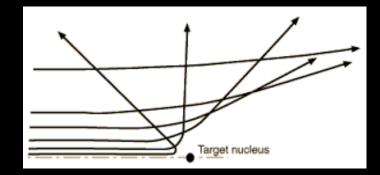

- Electrons are used because they aren't affected by strong force
- Neutrons used used because they aren't affected by electrical force

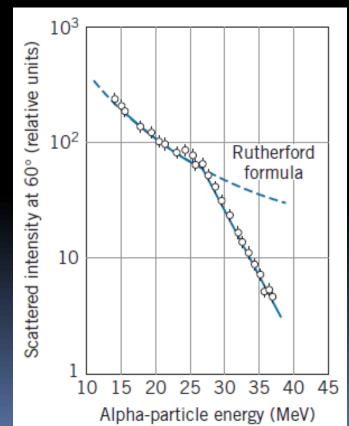
Deviations from Rutherford Scattering

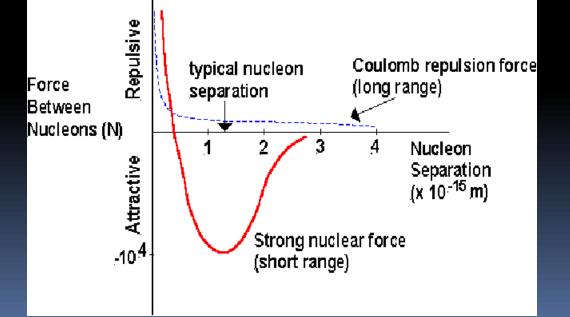
- Rutherford derived a formula for scattering of alpha particles
- As the scattering angle increases, the number of particles at that angle decreases sharply


$$N \propto \frac{1}{\sin^4 \frac{\theta}{2}}$$

Deviations from Rutherford Scattering

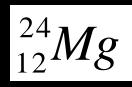

- However, with greater kinetic energy deviations in the Rutherford formula started occurring
- One of Rutherford's assumptions was that only the electrical repulsion force acted on the alpha
- Is that a valid assumption?



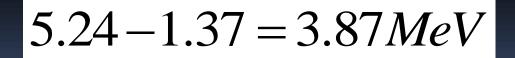


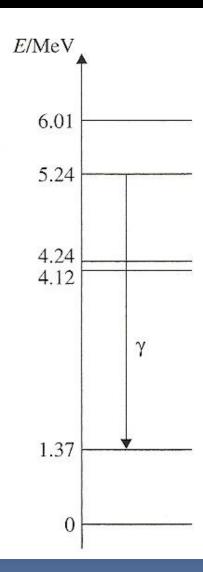
Deviations from Rutherford Scattering

 No, at distances of less than about 10⁻¹⁵ m, the strong force interacts with the alpha particle



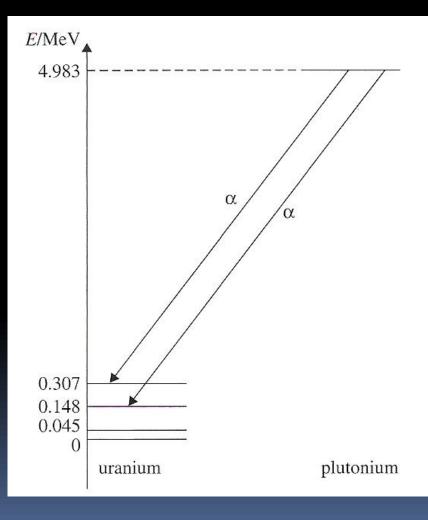
Nuclear Energy Levels


- The nucleus, like the atom, exists in discrete energy levels
- Main evidence is that alpha particles and gamma ray photons are emitted in discrete energy levels during decays
- In beta decays, the electrons have a continuous range of energies


Nuclear Energy Levels

Nuclear energy levels of

 Shown is a gamma decay (release of a photon) with energy



Nuclear Energy Levels

 Two decays of plutonium into uranium with release of an alpha particle

$$^{242}_{94}Pu \rightarrow ^{238}_{92}U + ^{4}_{2}\alpha$$

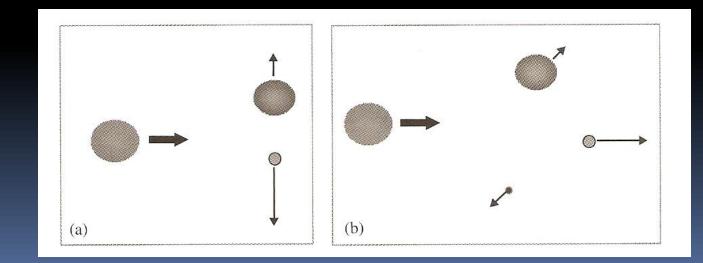
- Decay of a neutron
 - Decays into a proton, electron, and an antineutrino

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + {}^{0}_{0}\overline{v}_{e}$$

- This happens to free neutrons outside the nucleus because neutrons have greater mass than protons
- Half-life is about 11 minutes

Decay of a proton

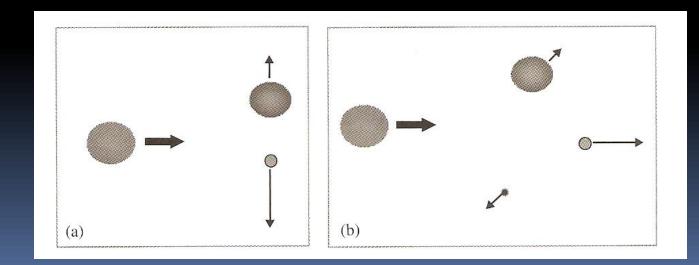
Decays into a neutron with the emission of a positron (anti-particle of an electron) and a neutrino


$${}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e + {}^{0}_{0}v_{e}$$

- Decay occurs inside the nucleus where binding energy makes up for the mass difference
- Not a split, but a disappearance and reformation

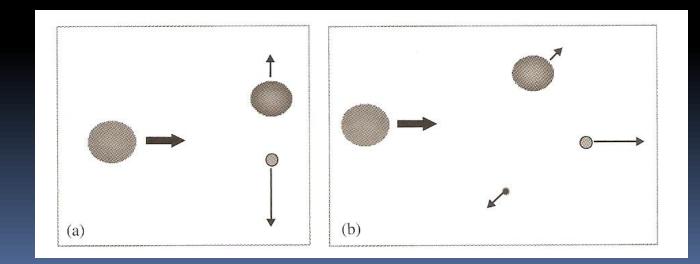
Presence of neutrinos
 predicted because the mass
 of a neutron is greater than
 the sum of the mass of a
 proton and electron

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + {}^{0}_{0}\overline{v}_{e}$$


$${}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e + {}^{0}_{0}v_{e}$$

 In other decays, this mass difference showed up in kinetic energy of the particles

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + {}^{0}_{0}\overline{v}_{e}$$


$${}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e + {}^{0}_{0}v_{e}$$

 Absence of the kinetic energy led to experiments that uncovered the neutrino (little neutral one) in 1953

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + {}^{0}_{0}\overline{v}_{e}$$

$${}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e + {}^{0}_{0}v_{e}$$

- Electron Capture
 - A proton inside the nucleus captures an electron and turns into a neutron and neutrino

$$^{1}_{1}p + ^{0}_{-1}e \rightarrow ^{1}_{0}n + ^{0}_{0}v_{e}$$

- This is the process occurring in neutron stars
- Huge pressure inside the star drives electrons into protons, turning them into neutrons

Examples of Beta Decay

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{-1}e + {}^{0}_{0}\overline{v}_{e} \quad {}^{1}_{1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e + {}^{0}_{0}v_{e} \quad {}^{1}_{1}p + {}^{0}_{-1}e \rightarrow {}^{1}_{0}n + {}^{0}_{0}v_{e}$$

And a second	
Decay	Half-life Maximum
J	
	energy

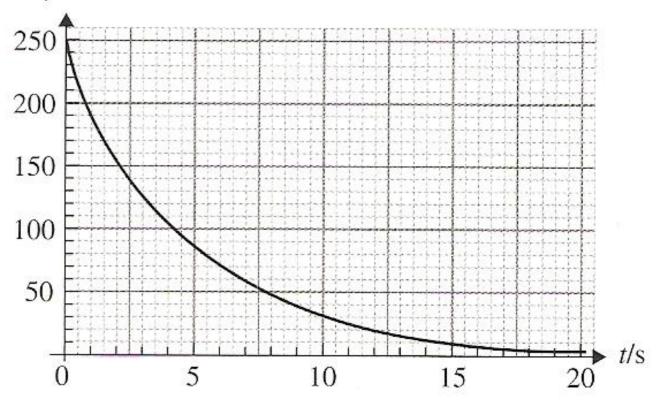
${}^{3}_{1}H \rightarrow {}^{3}_{2}He + {}^{0}_{-1}e + {}^{0}_{0}\bar{\nu}_{e}$	12.3 yr	0.0186 MeV
${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e + {}^{0}_{0}\bar{\nu}_{e}$	5730 yr	0.156 MeV
$\frac{22}{11}$ Na $\rightarrow \frac{22}{10}$ Ne $+ \frac{0}{+1}$ e $+ \frac{0}{0}\nu_{e}$	2.60 yr	0.546 MeV
$^{13}_{7}N \rightarrow ^{13}_{6}C + ^{0}_{+1}e + ^{0}_{0}\nu_{e}$	9.99 min	1.19 MeV

 The number of nuclei that will decay per second is proportional to the number of atoms present that have not yet decayed

$$\frac{dN}{dt} = -\lambda N$$

λ is a constant known as the decay constant
 Represents the probability of decay per unit time

The number of undecayed nuclei *N* at any given time in relation to the original number of undecayed nuclei *N_o* is given by the equation,


$$N = N_0 e^{-\lambda t}$$

The decay rate is exponential

- Half-Life: the time it takes for half of an amount of undecayed substance to decay
- The derivation to the right gives the relationship between half-life and decay rate

 $N = N_0 e^{-\lambda t}$ $\frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}}$ $\ln\frac{1}{2} = \ln\left(e^{-\lambda T_{1/2}}\right)$ $0.693 = \lambda T_{1/2}$

undecayed nuclei/×1026

The number of decays per second is called the *activity*,

The initial activity is

 $N = N_0 e^{-\lambda t}$ $A = -\frac{dN}{dN}$ dt $A = (N_0 \lambda) e^{-\lambda t}$ $A_0 = N_0 \lambda$ $A = \lambda N_0 e^{-\lambda t}$

 The decay constant
 represents the probability of decay per unit
 time

$$\frac{dN}{dt} = -\lambda N$$
$$dN = -\lambda N dt$$
$$probability = \frac{dN}{N} = -\lambda dt$$
$$\frac{probability}{dt} = \lambda$$

Essential Idea:

 The idea of discreteness that we met in the atomic world continues to exist in the nuclear world as well.

Understandings:

- Rutherford scattering and nuclear radius
- Nuclear energy levels
- The neutrino
- The law of radioactive decay and the decay constant

Guidance:

- Students should be aware that nuclear densities are approximately the same for all nuclei and that the only macroscopic objects with the same density as nuclei are neutron stars
- The small angle approximation is usually not appropriate to use to determine the location of the minimum intensity

Data Booklet Reference:

•
$$R = R_0 A^{1/3}$$

• $N = N_0 e^{-\lambda t}$
• $A = \lambda N_0 e^{-\lambda t}$
• $\sin \theta \approx \frac{\lambda}{D}$

Homework

Radioactive Video

