

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

TSOKOS LESSON 10-1 DESCRIBING FIELDS

Essential Idea:

 Electric charges and masses each influence the space around them and that influence can be represented through the concept of fields.

Nature Of Science:

 Paradigm shift: The move from direct, observable actions being responsible for influence on an object to acceptance of a field's "action at a distance" required a paradigm shift in the world of science.

Theory Of Knowledge:

- Although gravitational and electrostatic forces decrease with the square of distance and will only become zero at infinite separation, from a practical standpoint they become negligible at much smaller distances.
- How do scientists decide when an effect is so small that it can be ignored?

Understandings:

- Gravitational fields
- Electrostatic fields
- Electric potential and gravitational potential
- Field lines
- Equipotential surfaces

Applications And Skills:

- Representing sources of mass and charge, lines of electric and gravitational force, and field patterns using an appropriate symbolism
- Mapping fields using potential
- Describing the connection between equipotential surfaces and field lines

Guidance:

- Electrostatic fields are restricted to the radial fields around point or spherical charges, the field between two point charges and the uniform fields between charged parallel plates
- Gravitational fields are restricted to the radial fields around point or spherical masses and the (assumed) uniform field close to the surface of massive celestial bodies and planetary bodies

Guidance:

 Students should recognize that no work is done in moving charge or mass on an equipotential surface

Data Booklet References:

 $W = q \Delta V_{\rho}$ $W = m\Delta V_g$

Utilization:

 Knowledge of vector analysis is useful for this sub-topic

Aim

 Models developed for electric and gravitational fields using lines of forces allow predictions to be made but have limitations in terms of the finite width of a line

Introductory Video The Force of Gravity

Newton's 2nd Law

- Newton's second law (F=ma) implies that if a mass is accelerating, there must be a force acting on it
- An object falls because of gravity
- What holds planets in their orbits?

Newton's 2nd Law

- Newton's second law (F=ma) implies that if a mass is accelerating, there must be a force acting on it
- An object falls because of gravity
- What holds planets in their orbits?
 - Gravitational Force

Newton's Law of Gravitation

The attractive force between two point masses is,

$$F = G \frac{M_1 M_2}{r^2}$$

- Where,
 - M1 and M2 are the masses of the attracting bodies
 - r is the distance between them
 - G is Newton's constant of universal gravitation and has a value of 6.667 x 10⁻¹¹ N m² kg⁻²

Newton's Law of Gravitation

 The direction of the force is along the line joining the two masses,

Newton's Law of Gravitation

 The formula applies to point masses, which means the masses are small in relation to the separation between them

 The gravitational field strength at a certain point is the force per unit mass experienced by a small point mass, m, at that point.

$$F = G \frac{M_1 m}{r^2}$$
$$F = ma$$
$$ma = G \frac{M_1 m}{r^2}$$
$$a = g = G \frac{M_1}{r^2}$$

- The units of gravitational field strength are N·kg⁻¹
- $1N = 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$
- So units become m · s⁻²

$$F = G \frac{M_1 m}{r^2}$$
$$F = ma$$
$$ma = G \frac{M_1 m}{r^2}$$
$$a = G \frac{M_1}{r^2}$$

Gravitational field strength is a vector quantity whose direction is given by the direction of the force a point mass would experience if placed at the point of interest.

The gravitational field strength around a single point mass is radial which means it is the same for all points equidistant from the center of mass and directed toward the center.

 On a micro- versus macrolevel (like the projectile motion of a football), the field strength can be considered to be uniform with a constant value.

- The gravitational potential energy of two bodies is the work that was done in bringing the bodies to their present position from infinitely far apart.
- Negative sign signifies a force of attraction

$$F = G \frac{M_1 m}{r^2}$$
$$W = Fxd$$
$$F(r) = G \frac{M_1 m}{r^2} (r)$$
$$W = E_P = -G \frac{M_1 m}{r}$$

 The gravitational potential at a point P in a gravitational field is the work done per unit mass in bringing a small point mass m from infinity to point P.

- Gravitational potential is a scalar quantity
- Units are J/kg (work per unit mass)

- If a point mass *m* is moved from point *P* to point *Q*, it has a change in potential
- It takes work to do this, thus it also has a change in potential energy

$$V_{g} = -\frac{GM_{1}}{r}$$
$$W = mV_{g-Q} - mV_{g-P}$$
$$W = \Delta E_{P} = m\Delta V_{g}$$

- The work done is dependent only on the change in position, not on the path taken
- The movement must be done at a very small constant speed so that kinetic energy is not involved

$$\begin{split} V_g &= -\frac{GM_1}{r} \\ W &= mV_{g-Q} - mV_{g-P} \\ W &= \Delta E_P = m\Delta V_g \end{split}$$

Introductory Video: Electric Fields and Potential

- An electric field exists around any charged object and extends/radiates either into or out of the object
 - By convention, charge flows from positive to negative so,
 - For a positively charged object, the field lines extend outward

 For a positively charged object, the field lines extend outward

 For a negatively charged object, the field lines extend inward

- The field does not "exist" unless shown to exist by a charge
- We use a <u>small positive test charge</u>, q, to determine if a field exists – bring the test charge close and if it experiences a force, then a field exists

 Electric field is *defined* as the *force per unit* charge experienced by a <u>small positive test</u>

$$\vec{E} = k \frac{q_1 q_2}{r^2}$$

$$\vec{E} = \frac{\vec{F}}{q}$$

$$\vec{E} = \frac{kQ}{r^2}$$

The electric field is a vector with direction being the same as the force a positive charge would experience at the given point

Units for electric field is N/C

$$\vec{E} = \frac{\vec{F}}{q}$$
$$F = qE$$

 The electric field from a single point charge,
 Q, at a point a distance r away is

$$\vec{E} = \frac{\vec{F}}{q}$$
$$F = qE$$
$$F = k \frac{Q_1 q}{r^2}$$
$$qE = k \frac{Q_1 q}{r^2}$$
$$E = k \frac{Q_1 q}{r^2}$$

- Consider an electric field and a positive test charge q
- In order to move the charge from its equilibrium position, work must be done

 If held in that new position, the test charge now has potential energy like a compressed spring because it wants to go back to its equilibrium position

- It takes work to move the charge from one places to another
- The amount of work is equal to the change in potential energy

$$F = k \frac{Q_1 q}{r^2}$$
$$W = Fxd = E_p$$
$$E_p = k \frac{Q_1 q}{r^2} (r)$$
$$E_p = k \frac{Q_1 q}{r^2}$$

 Just as gravitational potential (V_g) is equal to work per unit mass, electric potential (V_e) is equal to work per unit charge

 The electric potential at a point *P* is the amount of work done per unit charge as a small positive test charge *q* is moved from infinity to the point *P*.

The unit of potential is the volt (V), and 1V = 1J/C

Electric Potential

 "V" is the electric potential and is defined in terms of the work, W, needed to bring a positive test charge, q, from very far away to a position close to the charged body

Remember that work is based on displacement and not distance travelled!

$$V_e = \frac{W}{q}$$

 $qV_{a} = W$

Potential Difference

The amount of work needed to move a test charge from one point to another is equal to the change in potential energy of the charge Just like gravity

 $W = \Lambda U$ $|W = U_R - U_A|$ $W = qV_{R} - qV_{A}$ $W = q(V_B - V_A)$

Summary

Video: Equipotentials and Fields

What is this?

 Gravitational potential is given by

$$V = -\frac{GM}{r}$$

 An equipotential surface consists of those points that have the same potential

 For electricity, equipotential surfaces or lines are areas where the potential around a charge are equal, just like the contour lines on a topographical map

high	
low	Vincrease

- All points a given distance from the center of a sphere will have the same potential
- All points a given perpendicular distance from a parallel plate will have the same potential

[

- Equipotential lines for two opposite charges of different magnitudes
- Movement along an equipotential line requires no work because there is no change in potential

- The electric field strength (E) is equal to the change in potential divided by the distance over which that change takes place
- Thus the field strength is equal to the potential gradient
- If the potential is constant, the field strength is zero
- Potential inside a sphere is constant so the field is zero

 Since there is no potential difference along an equipotential line, the field is zero along those lines

Since there IS a potential difference BETWEEN equipotential lines, and because field strength is based on displacement, the electric field is must be normal to those lines

- The surfaces of conductors are areas of equipotential
- Field lines run perpendicular to the surface of conductors
- If they didn't there would be a component parallel to the equipotential surface and that can't happen

Electricity Vs Gravitation

Comparison of
 Newton's Law of
 Gravitation and
 Coulomb's Law

	Gravitation	Electricity
Acts on	Mass (positive only)	Charge (positive or negative)
Force	$F = G \frac{M_1 M_2}{r^2}$	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r}$
	Attractive	Attractive or
	only	repulsive
	Infinite range	Infinite range
Relative strength	1	10 ⁴²
Field	$g = G \frac{M}{r^2}$	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
Potential	$V = -G \frac{M}{r}$	$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
Work	Independent	Independent
done	of path	of path
Potential energy	$U = -G \frac{Mm}{r}$	$U = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r}$

Parallel Plates

 <u>Uniform Electric Field</u> exists when the field has a constant magnitude and direction such as that generated by two oppositely charged parallel plates.

Parallel Plates

The field lines at the edges begin to curve
 The field is uniform if the length of the field is large compared to the distance between the plates

Electric Field between parallel plates

- The electric field, *E*, between two parallel plates is equal to the potential difference between the plates, *V*, divided by the distance between the plates, *d*
 - Note that E is the electric field E does not stand for energy!

$$E = \frac{V}{d}$$

Understandings:

- Gravitational fields
- Electrostatic fields
- Electric potential and gravitational potential
- Field lines
- Equipotential surfaces

Guidance:

- Electrostatic fields are restricted to the radial fields around point or spherical charges, the field between two point charges and the uniform fields between charged parallel plates
- Gravitational fields are restricted to the radial fields around point or spherical masses and the (assumed) uniform field close to the surface of massive celestial bodies and planetary bodies

Guidance:

 Students should recognize that no work is done in moving charge or mass on an equipotential surface

Data Booklet References:

 $W = q \Delta V_{\rho}$ $W = m\Delta V_g$

Applications And Skills:

- Representing sources of mass and charge, lines of electric and gravitational force, and field patterns using an appropriate symbolism
- Mapping fields using potential
- Describing the connection between equipotential surfaces and field lines

Essential Idea:

 Electric charges and masses each influence the space around them and that influence can be represented through the concept of fields.

QUESTIONS?

Homework

#1-21