

DEVGL PHYSSOCS
THE RADOEST CLATS ON CAXMTUS 2B pHYSICS

## TSOKOS LESSON 10-1 DESCRIBING FIELDS

## Essential Idea:

- Electric charges and masses each influence the space around them and that influence can be represented through the concept of fields.


## Nature Of Science:

- Paradigm shift: The move from direct, observable actions being responsible for influence on an object to acceptance of a field's "action at a distance" required a paradigm shift in the world of science.


## Theory Of Knowledge:

- Although gravitational and electrostatic forces decrease with the square of distance and will only become zero at infinite separation, from a practical standpoint they become negligible at much smaller distances.
- How do scientists decide when an effect is so small that it can be ignored?


## Understandings:

- Gravitational fields
- Electrostatic fields
- Electric potential and gravitational potential
- Field lines
- Equipotential surfaces


## Applications And Skills:

- Representing sources of mass and charge, lines of electric and gravitational force, and field patterns using an appropriate symbolism
- Mapping fields using potential
- Describing the connection between equipotential surfaces and field lines


## Guidance:

- Electrostatic fields are restricted to the radial fields around point or spherical charges, the field between two point charges and the uniform fields between charged parallel plates
- Gravitational fields are restricted to the radial fields around point or spherical masses and the (assumed) uniform field close to the surface of massive celestial bodies and planetary bodies


## Guidance:

- Students should recognize that no work is done in moving charge or mass on an equipotential surface


## Data Booklet References:

$$
\begin{aligned}
& W=q \Delta V_{e} \\
& W=m \Delta V_{g}
\end{aligned}
$$

## Utilization:

- Knowledge of vector analysis is useful for this sub-topic


## Aim

- Models developed for electric and gravitational fields using lines of forces allow predictions to be made but have limitations in terms of the finite width of a line

Introductory Video
The Force of Gravity


## Newton's $2^{\text {nd }}$ Law

- Newton's second law ( $\mathrm{F}=\mathrm{ma}$ ) implies that if a mass is accelerating, there must be a force acting on it
- An object falls because of gravity
- What holds planets in their orbits?


## Newton's $2^{\text {nd }}$ Law

- Newton's second law ( $\mathrm{F}=\mathrm{ma}$ ) implies that if a mass is accelerating, there must be a force acting on it
- An object falls because of gravity
- What holds planets in their orbits?
- Gravitational Force


## Newton's Law of Gravitation

- The attractive force between two point masses is,
- Where,

- M1 and M2 are the masses of the attracting bodies
- $r$ is the distance between them
- G is Newton's constant of universal gravitation and has a value of $6.667 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$


## Newton's Law of Gravitation

- The direction of the force is along the line joining the two masses,



## Newton's Law of Gravitation

- The formula applies to point masses, which means the masses are small in relation to the separation between them



## Gravitational Field Strength

- The gravitational field strength at a certain point is the force per unit mass experienced by a small point mass, m, at that point.

$$
\begin{aligned}
& F=G \frac{M_{1} m}{r^{2}} \\
& F=m a \\
& m a=G \frac{M_{1} m}{r^{2}} \\
& a=g=G \frac{M_{1}}{r^{2}}
\end{aligned}
$$

## Gravitational Field Strength

- The units of gravitational field strength are $\mathrm{N} \cdot \mathrm{kg}^{-1}$
- $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}$
- So units become $\mathrm{m} \cdot \mathrm{s}^{-2}$

$$
\begin{aligned}
& F=G \frac{M_{1} m}{r^{2}} \\
& F=m a
\end{aligned}
$$

$$
m a=G \frac{M_{1} m}{r^{2}}
$$

$$
a=G \frac{M_{1}}{r^{2}}
$$

## Gravitational Field Strength

- Gravitational field strength is a vector quantity whose direction is given by the direction of the force a point mass would experience if placed at the point of interest.


## Gravitational Field Strength

- The gravitational field strength around a single point mass is radial which means it is the same for all points equidistant from the center of mass and directed toward the center.


## Gravitational Field Strength

- On a micro- versus macrolevel (like the projectile motion of a football), the field strength can be considered to be uniform with a constant value.



## Gravitational Potential Energy

- The gravitational potential energy of two bodies is the work that was done in bringing the bodies to their present position from infinitely far apart.
- Negative sign signifies a force of attraction

$$
\begin{aligned}
& F=G \frac{M_{1} m}{r^{2}} \\
& W=F x d
\end{aligned}
$$

$$
F(r)=G \frac{M_{1} m}{r^{2}}(r)
$$

$$
W=E_{P}=-G \frac{M_{1} m}{r}
$$

## Gravitational Potential Energy

- The gravitational potential at a point $P$ in a gravitational field is the work done per unit mass in bringing a small point mass $m$ from infinity to point $P$.




## Gravitational Potential Energy

- Gravitational potential is a scalar quantity
- Units are J/kg (work per unit mass)


## Gravitational Potential Energy

- If a point mass $m$ is moved from point $P$ to point $Q$, it has a change in potential
- It takes work to do this, thus it also has a change in potential energy


$$
W=m V_{g-Q}-m V_{g-P}
$$

$$
W=\Delta E_{P}=m \Delta V_{g}
$$

## Gravitational Potential Energy

- The work done is dependent only on the change in position, not on the path taken
- The movement must be done at a very small constant speed so that kinetic energy is not involved

Introductory Video: Electric Fields and Potential

## Electric Field

- An electric field exists around any charged object and extends/radiates either into or out of the object
- By convention, charge flows from positive to negative sor,
- For a positively charged object, the field lines extend outward


## Electric Field

- For a positively charged object, the field lines extend outward

- For a negatively charged object, the field lines extend inward


## Electric Field

- The field does not "exist" unless shown to exist by a charge
- We use a small positive test charge, q, to determine if a field exists - bring the test charge close and if it experiences a force, then a field exists


## Electric Field

- Electric field is defined as the force per unit charge experienced by a small positive test charge, $q_{\text {, }}$


The electric field is a vector with direction being the same as the force a positive charge would experience at the given point

## Electric Field

- Units for electric field is N/C



## Electric Field

- The electric field from a single point charge, Q, at a point a distance $r$ away is


## Electric Potential Energy

- Consider an electric field and a positive test charge $q$
- In order to move the charge from its equilibrium position, work must be done



## Electric Potential Energy

- If held in that new position, the test charge now has potential energy like a compressed spring because it wants to go back to its equilibrium position



## Electric Potential Energy

- It takes work to move the charge from one places to another
- The amount of work is equal to the change in potential energy

$$
\begin{aligned}
& F=k \frac{Q_{1} q}{r^{2}} \\
& W=F x d=E_{P} \\
& E_{P}=k \frac{Q_{1} q}{r^{2}}(r) \\
& E_{P}=k \frac{Q_{1} q}{r}
\end{aligned}
$$

## Electric Potential Energy

- Just as gravitational potential $\left(V_{g}\right)$ is equal to work per unit mass, electric potential $\left(\mathrm{V}_{\mathrm{e}}\right)$ is equal to work per unit charge



## Electric Potential Energy

- The electric potential at a point $P$ is the amount of work done per unit charge as a small positive test charge $q$ is moved from infinity to the point $P$.

- The unit of potential is the volt (V), and $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$


## Electric Potential

- "V" is the electric potential and is defined in terms of the work, W , needed to bring a positive test charge, $q$, from very far away to a position close to the charged body

Remember that work is based on displacement and not distance travelled!

$$
q V_{e}=W
$$

## Potential Difference

- The amount of work needed to move a test charge from one point to another is equal to the change in potential energy of the charge
- Just like gravity

$$
W=\Delta U
$$

$$
W=U_{B}-U_{A}
$$

$$
W=q V_{B}-q V_{A}
$$

$$
W=q\left(V_{B}-V_{A}\right)
$$

## Summary

Force


Field


Potential
Potential
Energy

$$
\begin{aligned}
& E_{P-g}=\frac{G M m}{r} \\
& E_{P-g}=m \Delta V_{g} \\
& E_{P-e}=\frac{k Q q}{r} \\
& E_{P-e}=m \Delta V_{e}
\end{aligned}
$$

Video: Equipotentials and
Fields

## Equipotential Surfaces

- What is this?



## Equipotential Surfaces

- Gravitational potential is given by

- An equipotential surface consists of those points that have the same potential



## Equipotential Surfaces



## Equipotential Surfaces



## Equipotential Surfaces

- For electricity, equipotential surfaces or lines are areas where the potential around a charge are equal, just like the contour lines on a topographical map



## Equipotential Surfaces

- All points a given distance from the center of a sphere will have the same potential
- All points a given perpendicular distance from a parallel plate will have the same potential



## Equipotential Surfaces

- Equipotential lines for two opposite charges of different magnitudes
- Movement along an equipotential line requires no work because there is no change in potential


Connection Between Electric Field and Electric Potential

- The electric field strength (E) is equal to the change in potential divided by the distance over which that change takes place
- Thus the field strength is equal to the potential gradient
- If the potential is constant, the
 field strength is zero
- Potential inside a sphere is constant so the field is zero


## Connection Between Electric Field and Electric Potential

- Since there is no potential difference along an equipotential line, the field is zero along those lines



## Connection Between Electric Field and Electric Potential

- Since there IS a potential difference BETWEEN equipotential lines, and because field strength is based on displacement, the electric field is must be normal to those lines



# Connection Between Electric Field and Electric Potential 

- The surfaces of conductors are areas of equipotential
- Field lines run perpendicular to the surface of conductors
- If they didn't there would be a component parallel to the equipotential surface and that can't happen


## Connection Between Electric Field and Electric Potential

field lines are normal to a conductor

impossible field lines

## Electricity Vs Gravitation

- Comparison of Newton's Law of Gravitation and Coulomb's Law
\(\left.$$
\begin{array}{lll}\hline & \text { Gravitation } & \begin{array}{l}\text { Electricity }\end{array} \\
\hline \text { Acts on } & \begin{array}{l}\text { Mass (positive } \\
\text { only) }\end{array} & \begin{array}{l}\text { Charge (positive } \\
\text { or negative) }\end{array} \\
\hline \text { Force } & \begin{array}{l}F=G \frac{M_{1} M_{2}}{r^{2}}\end{array} & \begin{array}{l}F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r} \\
\text { Attractive } \\
\text { only } \\
\text { Infinite range }\end{array}\end{array}
$$ \begin{array}{l}Attractive or <br>
repulsive <br>

Infinite range\end{array}\right]\)| $10^{42}$ |  |  |
| :--- | :--- | :--- |
| Relative <br> strength | 1 | $E=\frac{1}{4 \pi \varepsilon_{0} \frac{Q}{r^{2}}}$ |
| Field | $g=G \frac{M}{r^{2}}$ | $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$ |
| Potential | $V=-G \frac{M}{r}$ | Independent <br> of path |
| Work <br> done | Independent <br> of path | $U=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{r}$ |
| Potential <br> energy | $U=-G \frac{M m}{r}$ |  |

## Parallel Plates

- Uniform Electric Field exists when the field has a constant magnitude and direction such as that generated by two oppositely charged parallel plates.



## Parallel Plates



- The field lines at the edges begin to curve
- The field is uniform if the length of the field is large compared to the distance between the plates


## Electric Field between parallel plates

- The electric field, $E_{\text {, }}$ between two parallel plates is equal to the potential difference between the plates, $V$, divided by the distance between the plates, $d$
- Note that $E$ is the electric field $-E$ does not stand for energy!



## Understandings:

- Gravitational fields
- Electrostatic fields
- Electric potential and gravitational potential
- Field lines
- Equipotential surfaces


## Guidance:

- Electrostatic fields are restricted to the radial fields around point or spherical charges, the field between two point charges and the uniform fields between charged parallel plates
- Gravitational fields are restricted to the radial fields around point or spherical masses and the (assumed) uniform field close to the surface of massive celestial bodies and planetary bodies


## Guidance:

- Students should recognize that no work is done in moving charge or mass on an equipotential surface


## Data Booklet References:

$$
\begin{aligned}
& W=q \Delta V_{e} \\
& W=m \Delta V_{g}
\end{aligned}
$$

## Applications And Skills:

- Representing sources of mass and charge, lines of electric and gravitational force, and field patterns using an appropriate symbolism
- Mapping fields using potential
- Describing the connection between equipotential surfaces and field lines


## Essential Idea:

- Electric charges and masses each influence the space around them and that influence can be represented through the concept of fields.


QUESTIONS?

## Homework

\#1-21

