

DEVIL PHYSSOCS
THE BADDEST CLASS ON GAXMPTS 9B pHYSICS

IB TOPIC 1-3
VECTORS AND SCALARS

Essential Idea

- Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities. This sub-topic will have broad applications across multiple fields within physics and other sciences.

Nature Of Science

- Models: First mentioned explicitly in a scientific paper in 1846, scalars and vectors reflected the work of scientists and mathematicians across the globe for over 300 years on representing measurements in three-dimensional space.

International-Mindedness

- Vector notation forms the basis of mapping across the globe

Theory Of Knowledge

- What is the nature of certainty and proof in mathematics?

Understandings

- Vector and scalar quantities
- Combination and resolution of vectors

Applications And Skills

- Solving vector problems graphically and algebraically

Guidance

- Resolution of vectors will be limited to two perpendicular directions
- Problems will be limited to addition and subtraction of vectors and the multiplication and division of vectors by scalars

Data Booklet Reference

$$
\begin{aligned}
& \quad A=A \cos \theta \\
& A_{v}=A \sin \theta
\end{aligned}
$$

Utilization

- Navigation and surveying (see Geography SL/HL syllabus: Geographic skills)
- Force and field strength (see Physics subtopics 2.2, 5.1, 6.1 and 10.1)
- Vectors (see Mathematics HL sub-topic 4.1; Mathematics SL sub-topic 4.1)

Introductory Video

What are scalars and vectors?

Scalars

- Require only a number to represent them
- No direction involved

Vectors

- Cannot be fully specified without both a number (magnitude) and direction
- Represented by an arrow from left to right over the variable
- Two vectors are equal only if both their magnitude and direction are the same

Examples of Vectors and Scalars

Vectors	Scalars
Displacement Distance Velocity Speed Acceleration Mass Force Time Weight Density Electric field Electric potential Magnetic field Energy Gravitational field Gravitational potential Torque Volumerature Area Electric charge Momentum Work Angular velocity Table 4.1 Examples of vectors and scalars.	

Multiplying a Vector by a Scalar

- Multiplication of a vector by a scalar only affects the magnitude and not the direction

Introductory Video
Adding Vectors

Adding Vectors

 Parallelogram Method

Adding Vectors

 Head-To-Tail Method

Subtracting Vectors

 Head-To-Tail Method

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Trigonometry Revisited

$$
\begin{aligned}
& \sin x=\frac{o p p}{h y p}=\frac{B}{C}, x^{o}=\sin ^{-1} \frac{B}{C} \\
& \cos x=\frac{a d j}{h y p}=\frac{A}{C}, x^{o}=\cos ^{-1} \frac{A}{C} \\
& \tan x=\frac{o p p}{a d j}=\frac{B}{A}, x^{o}=\tan ^{-1} \frac{B}{A}
\end{aligned}
$$

Adding Vectors

Component Method

Adding Vectors

Component Method
$\vec{B}=20,-25^{\circ}$ from x
$\cos 25^{\circ}=\frac{B_{x}}{20}$
$B_{x}=20 \cos 25^{\circ}=18.1$
$\sin 25^{\circ}=\frac{B_{y}}{20}$
$B_{y}=20 \sin 25^{\circ}=-8.5$

Adding Vectors

Component Method

Adding Vectors

Component Method

$$
\begin{aligned}
& \tan \theta=\frac{R_{y}}{R_{x}} \\
& \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1} \frac{12.6}{39.2} \\
& \theta=17.8^{\circ}
\end{aligned}
$$

\vec{R}_{y}

\vec{R}_{x}

Essential Idea

- Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities. This sub-topic will have broad applications across multiple fields within physics and other sciences.

Understandings

- Vector and scalar quantities
- Combination and resolution of vectors

Applications And Skills

- Solving vector problems graphically and algebraically

QTESTTIONS?

Homework

- \#35-46

