

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

IB TOPIC 1-3 VECTORS AND SCALARS

Essential Idea

 Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities. This sub-topic will have broad applications across multiple fields within physics and other sciences.

Nature Of Science

 Models: First mentioned explicitly in a scientific paper in 1846, scalars and vectors reflected the work of scientists and mathematicians across the globe for over 300 years on representing measurements in three-dimensional space.

International-Mindedness

 Vector notation forms the basis of mapping across the globe

Theory Of Knowledge

What is the nature of certainty and proof in *mathematics*?

Understandings

- Vector and scalar quantities
- Combination and resolution of vectors

Applications And Skills

 Solving vector problems graphically and algebraically

Guidance

- Resolution of vectors will be limited to two perpendicular directions
- Problems will be limited to addition and subtraction of vectors and the multiplication and division of vectors by scalars

Data Booklet Reference

Utilization

- Navigation and surveying (see Geography SL/HL syllabus: Geographic skills)
- Force and field strength (see Physics subtopics 2.2, 5.1, 6.1 and 10.1)
- Vectors (see Mathematics HL sub-topic 4.1; Mathematics SL sub-topic 4.1)

<u>Introductory Video</u> What are scalars and vectors?

Scalars

- Require only a number to represent them
- No direction involved

Vectors

- Cannot be fully specified without *both* a number (magnitude) *and* direction
- Represented by an arrow from left to right over the variable
- Two vectors are equal only if *both* their magnitude *and* direction are the same

Examples of Vectors and Scalars

Vectors	Scalars
Displacement	Distance
Velocity	Speed
Acceleration	Mass
Force	Time
Weight	Density
Electric field	Electric potential
Magnetic field	Energy
Gravitational field	Gravitational potential
Torque	Temperature
Area	Volume
Momentum	Electric charge
Angular velocity	Work

Table 4.1 Examples of vectors and scalars.

Multiplying a Vector by a Scalar

 Multiplication of a vector by a scalar only affects the magnitude and not the direction

Introductory Video Adding Vectors

Adding Vectors Parallelogram Method

Adding Vectors Head-To-Tail Method

Subtracting Vectors Head-To-Tail Method

Adding Vectors Head-To-Tail by Components

Adding Vectors Head-To-Tail by Components

Adding Vectors Head-To-Tail by Components

Trigonometry Revisited

$$\sin x = \frac{opp}{hyp} = \frac{B}{C}, x^o = \sin^{-1}\frac{B}{C}$$
$$\cos x = \frac{adj}{hyp} = \frac{A}{C}, x^o = \cos^{-1}\frac{A}{C}$$
$$\tan x = \frac{opp}{adj} = \frac{B}{A}, x^o = \tan^{-1}\frac{B}{A}$$

R


```
\vec{A} = 30, +45^{\circ} from x
\cos 45^o = \frac{A_x}{30}
A_r = 30\cos 45^\circ = 21.2
\sin 45^o = \frac{A_y}{30}
A_v = 30 \sin 45^\circ = 21.2
```

 $\bar{B} = 20, -25^{\circ}$ from x $\cos 25^o = \frac{B_x}{20}$ $B_r = 20\cos 25^\circ = 18.1$ $\sin 25^o = \frac{B_y}{1}$ 20 $B_{v} = 20 \sin 25^{\circ} = -8.5$

$$\vec{R}_{x} = A_{x} + B_{x} = 21.1 + 18.1 = 39.2$$

$$R_{y} = A_{y} + B_{y} = 21.1 - 8.5 = 12.6$$

$$a^{2} + b^{2} = c^{2}$$

$$R = \sqrt{R_{x}^{2} + R_{y}^{2}} = 41.2$$

Essential Idea

 Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities. This sub-topic will have broad applications across multiple fields within physics and other sciences.

Understandings

- Vector and scalar quantities
- Combination and resolution of vectors

Applications And Skills

 Solving vector problems graphically and algebraically

QUEST90NS?

Homework

#35-46