

DEVIL PHYSSOCS
THE BADDEST CLASS ON GAXMPTS OB pHYSICS

## TSOKOS LESSON 1-2 UNCERTAINTIES AND ERRORS

## Reading Activity Questions?

## Essential Idea

- Scientists aim towards designing experiments that can give a "true value" from their measurements, but due to the limited precision in measuring devices, they often quote their results with some form of uncertainty.


## Nature Of Science

- Uncertainties: "All scientific knowledge is uncertain... if you have made up your mind already, you might not solve it. When the scientist tells you he does not know the answer, he is an ignorant man. When he tells you he has a hunch about how it is going to work, he is uncertain about it. When he is pretty sure of how it is going to work, and he tells you, 'This is the way it's going to work, I'll bet,' he still is in some doubt. And it is of paramount importance, in order to make progress, that we recognize this ignorance and this doubt. Because we have the doubt, we then propose looking in new directions for new ideas." (3.4) Feynman, Richard P. 1998. The Meaning of It All: Thoughts of a CitizenScientist. Reading, Massachusetts, USA. Perseus. P 13.


## Theory Of Knowledge

- "One aim of the physical sciences has been to give an exact picture of the material world. One achievement of physics in the twentieth century has been to prove that this aim is unattainable." - Jacob Bronowski.
- Can scientists ever be truly certain of their discoveries?


## Understandings

- Random and systematic errors
- Absolute, fractional and percentage uncertainties
- Error bars
- Uncertainty of gradient and intercepts


## Applications And Skills

- Explaining how random and systematic errors can be identified and reduced
- Collecting data that include absolute and/or fractional uncertainties and stating these as an uncertainty range (expressed as: best estimate $\pm$ uncertainty range)


## Applications And Skills

- Propagating uncertainties through calculations involving addition, subtraction, multiplication, division and raising to a power
- Determining the uncertainty in gradients and intercepts


## Guidance

- Analysis of uncertainties will not be expected for trigonometric or logarithmic functions in examinations


## Data Booklet Reference

- If $y=a \pm b$
- Then $\Delta y=\Delta a \pm \Delta b$
- If $y=\frac{a b}{c}$
- Then

$$
\frac{\Delta y}{y}=\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c}
$$

- If $y=a^{n}$
then

$$
\frac{\Delta y}{y}=\left|n \frac{\Delta a}{a}\right|
$$

## Utilization

- Students studying more than one group 4 subject will be able to use these skills across all subjects

Aims

- Aim 4: it is important that students see scientific errors and uncertainties not only as the range of possible answers but as an integral part of the scientific process
- Aim 9: the process of using uncertainties in classical physics can be compared to the view of uncertainties in modern (and particularly quantum) physics


## Accuracy and Precision Video

## Accuracy and Precision

- Measurements can never be absolutely precise
- Because of this, there will always be some amount of uncertainty in a measurement
- As scientists, we must always strive to minimize uncertainty and to suggest ways to further minimize uncertainty in future experiments
- As scientists, we must quantify and express the level of uncertainty in our data


## Accuracy and Precision

- Measurements are accurate if the systematic error is small
- Individual deviations may be high, but mean is close to actual value
- Measurements are precise if random error is small
- Individual deviations are low, but mean is significantly different from actual value



## Accounting for Uncertainty

## CHEM 1210 <br> General Chemistry I

## Units and Uncertainty



Prof. Chuck Wight
Tin
OF UTAH*

## Errors of measurement

- Random
- almost always the fault of the observer
- human error
- outside factors, uncontrolled variables
- not predictable
- assumed to be sometimes high, sometimes low
- can be minimized by averaging over repeated measurements
What are some examples?


## Errors of measurement

- Systematic
- usually the fault of both the user and the instrument
- error is in the same direction and in the same amount for each measurement
- cannot be minimized by repeated measurements
- What are some examples?


## Errors of measurement

- Ball Bounce Lab
- Should you have an x- or y-intercept on the graph?


## Errors of measurement

- Reading or tool error
- function of the precision of the instrument
- assumed to be $\pm$ one half of the smallest division on analog tool
- If a ruler measures in mm, the reading/tool error is assumed to be $\pm 0.5 \mathrm{~mm}$
" Remember that you can estimate between divisions!
- for digital instruments, the reading/tool error is assumed to be $\pm$ the smallest division

If a digital scale reads hundredths of a gram, the reading/ tool error is assumed to be $\pm 0.01 \mathrm{~g}$

## Errors of measurement

What is the measurement and error from the metre stick below?


## Errors of measurement

What is the measurement and error from the metre stick below?


## Errors of measurement

What is the measurement and error from the metre stick below?


## Accounting for Random Error

- A measurement repeated many times can be assumed to be too high as often as it is too low
- Random error is minimized by taking the average of many readings, the mean
- You then must consider the standard deviation from the mean - the average of the distance from the mean for all of the measurements


## Accounting for Random Error

- Standard Deviation

$$
\sigma=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\bullet \bullet \bullet+\left(x_{N}-\bar{x}\right)^{2}}{N-1}}
$$

- Not evaluated on exams, good for IA
- Half the Max Difference

$$
\Delta x=\frac{x_{\max }-x_{\min }}{2}
$$

## Accounting for Random Error

- If the standard deviation or half the max difference is greater than the reading error, you can use it as your uncertainty
- A final, and the most conservative, method is to simply take the highest deviation from the mean and use that as your uncertainty - assuming it is greater than your assumed reading error


## Accounting for Random Error

- No right or wrong answer when it comes to method
- But, you must account for uncertainty
- Method chosen based on judgment
- Some judgments better than others, some open to questioning
- Explain your reasoning


## How Long Is Your Table

## How Long Is Your Table Really

- Measure each table
- Enter into spreadsheet
- What value will you use for the length of the table?
- What will you use for the uncertainty?

| Table | Length | Deviation |
| :---: | :---: | :---: |
| 1 |  | \#DIV/0! |
| 2 |  | \#DIV/0! |
| 3 |  | \#DIV/0! |
| 4 |  | \#DIV/0! |
| 5 |  | \#DIV/0! |
| 6 |  | \#DIV/0! |
| 7 |  | \#DIV/0! |
|  |  |  |
| Mean | \#DIV/0! |  |
| Std Dev | \#DIV/0! |  |
| Greatest Dev |  |  |

How Long Is Your Table . . . Really

- What error is involved in measuring the table?
- How can you minimize the error?
- What is the assumed tool error?
- What are other methods for considering uncertainty other than tool error?

How Long Is Your Table . . . Really

- What error is involved in measuring the table?
- Random error, reading error
- How can you minimize the error?
- What is the assumed tool error?
- What are other methods for considering uncertainty other than tool error?

How Long Is Your Table . . . Really

- What error is involved in measuring the table?
- Random error, reading error
- How can you minimize the error?
- Take multiple measurements and average
- What is the assumed tool error?
- What are other methods for considering uncertainty other than tool error?

How Long Is Your Table . . . Really

- What error is involved in measuring the table?
- Random error, reading error
- How can you minimize the error?
- Take multiple measurements and average
- What is the assumed tool error?
- Metre stick, $\pm 0.5 \mathrm{~mm}$ or $\pm 0.05 \mathrm{~cm}$
- But how many times?
- What are other methods for considering uncertainty other than tool error?

How Long Is Your Table . . . Really

- What error is involved in measuring the table?
- Random error, reading error
- How can you minimize the error?
- Take multiple measurements and average
- What is the assumed tool error?
- Metre stick, $\pm 0.5 \mathrm{~mm}$ or $\pm 0.05 \mathrm{~cm}$
- But how many times?
- What are other methods for considering uncertainty other than tool error?


## Systematic Error

- Typically in the same direction and the same amount for every measurement
- Calibration error
- Zero error



## Systematic Error

- Human-induced systematic error
- Making the same error in reading an instrument each time She takes a measurement
- Parallax is a good example
- Tilted graduated cylinder is another



## Total System Error

- Highest of the above?
- Sum of random and systematic?
- Sum of all the above?
- Based on your judgment
- Be realistic
- Be conservative, but not overly so
- Explain your reasoning - graded on making a reasoned approach


## Significant Digits in Uncertainties

- Just one, pretty much
- Customarily


## Propagation of Errors

## $a=a_{0} \pm \Delta a$

- a = the "real" or "actual" value
- $a_{0}=$ the measured value
- $\Delta \mathrm{a}=$ uncertainty or error
- $\Delta \mathrm{a} / \mathrm{a}_{\mathrm{o}}=$ fractional uncertainty
- $\Delta \mathrm{a} / \mathrm{a}_{0} \times 100 \%=$ percent uncertainty


## Propagation of Errors

- Addition and Subtraction
- Absolute Error
- a = the "real" or "actual" value
- $a_{0}=$ the measured value
- $\Delta \mathrm{a}=$ uncertainty or error
- $\Delta \mathrm{a} / \mathrm{a}_{0}=$ fractional uncertainty
- $\Delta \mathrm{a} / \mathrm{a}_{0} \times 100 \%=$ percent uncertainty

$$
\begin{aligned}
& Q=a+b \\
& Q=a-b \\
& Q=a+b-c
\end{aligned}
$$

## $\Delta Q=\Delta a+\Delta b$

## $\Delta Q=\Delta a+\Delta b$

$$
\Delta Q=\Delta a+\Delta b+\Delta c
$$

## Propagation of Errors

- Addition and Subtraction
- Absolute Error
- a = the "real" or "actual" value
- $a_{0}=$ the measured value
- $\Delta \mathrm{a}=$ uncertainty or error
- $\Delta \mathrm{a} / \mathrm{a}_{0}=$ fractional uncertainty
- $\Delta \mathrm{a} / \mathrm{a}_{0} \times 100 \%=$ percent uncertainty

Assumes $\Delta a, \Delta b$, and $\Delta c$ all have the same units!!!

$$
\begin{aligned}
& Q=a+b \\
& Q=a-b \\
& Q=a+b-c
\end{aligned}
$$

## $\Delta Q=\Delta a+\Delta b$

$\Delta Q=\Delta a+\Delta b$
$\Delta Q=\Delta a+\Delta b+\Delta c$

## Propagation of Errors

- Multiplication and Division - Fractional Error

$$
\begin{aligned}
& Q=a b \\
& Q=\frac{a}{b} \\
& Q=\frac{a b}{c}
\end{aligned}
$$

## Propagation of Errors

- Multiplication and Division - Fractional Error

Units don't matter!!!

$$
\begin{aligned}
& Q=a b \\
& Q=\frac{a}{b} \\
& Q=\frac{a b}{c}
\end{aligned}
$$


$\frac{\Delta Q}{Q_{0}}=\frac{\Delta a}{a_{0}}+\frac{\Delta b}{b_{0}}+\frac{\Delta c}{c_{0}}$

## Propagation of Errors

- Multiplication and Division
- Absolute Uncertainty

$$
\begin{aligned}
& \frac{\Delta Q}{Q_{0}}=\frac{\Delta a}{a_{0}}+\frac{\Delta b}{b_{0}} \\
& \Delta Q=\left[\frac{\Delta a}{a_{0}}+\frac{\Delta b}{b_{0}}\right] Q_{0}
\end{aligned}
$$

## Propagation of Errors

- Multiplication and Division
- Absolute Uncertainty
- Example
- W=Fxd

$$
\begin{aligned}
& \frac{\Delta W}{W_{0}}=\frac{\Delta F}{F_{0}}+\frac{\Delta d}{d_{0}} \\
& \Delta W=\left[\frac{\Delta F}{F_{0}}+\frac{\Delta d}{d_{0}}\right] W_{0}
\end{aligned}
$$

$\frac{\Delta Q}{Q_{0}}=\frac{\Delta a}{a_{0}}+\frac{\Delta b}{b_{0}}$
$\Delta Q=\left[\frac{\Delta a}{a_{0}}+\frac{\Delta b}{b_{0}}\right] Q_{0}$

## Propagation of Errors

## - Powers and Roots



Other Functions?

## Other Functions

- Don't worry about it


## Now what

- You've got your data points
- You've propagated your uncertainties
- Now what?


## Now what

- You've got your data points
- You've propagated your uncertainties
- Now what?
- Graphing - the ultimate data summary!


## Uncertainties in Slope and Intercept

- You graph your points -- What's next?


Figure 5.5 Data points plotted together with uncertainties in the values for the tension.

## Uncertainties in Slope and Intercept

- You graph your points --What's next?


## - Error bars

- What's next?


Figure 5.5 Data points plotted together with uncertainties in the values for the tension.

## Uncertainties in Slope and Intercept

- You graph your points -- What's next?
- Errorbars
- What's next?
- Line of Best Fit
- What's next?


Figure 5.6 The line of best fit through the data points.

## Uncertainties in Slope and Intercept

- You graph your points -- What's next?


## - Error bars

- What's next?
- Line of Best Fit
- What's next?
- Min/Max Slope
- What's next?


Figure 5.7 The uncertainty in the slope can be estimated by drawing two extreme additional graphs through the centre point.

## Uncertainties in Slope and Intercept

- You graph your points -- What's next?
- Error bars
- What's next?
- Line of Best Fit
- What's next?
- Min/Max Slope
- What's next?

Uncertainty of slope and intercept


Figure 5.7 The uncertainty in the slope can be estimated by drawing two extreme additional graphs through the centre point.

## Line of Best Fit Video

$$
\begin{aligned}
& \text { How to find the } \\
& \text { Line of Best Fit. }
\end{aligned}
$$



## Line of Best Fit

- Choosing a line which goes through as many error bars as possible in such a way that the distances between the line and the points on one side of it are, on average, the same as the distances between the line and points on the other side of it.
- New



## Line of Best Fit

- The line of best fit will ideally pass through the vertical and horizontal error bars
- NEVER connect the dots with straight-line segments
- Let Excel do it
- Works on curves too
- Let Excel do it



## Line of Best Fit - Slope

- The slope of the line of best fit gives you the best relationship between your two variables
- To find the slope,
- Use points on line of best fit, NOT YOUR DATA POINTS!
- Take points as far away from each other as possible



## Line of Best Fit - Slope Uncertainty

- You've accounted for the uncertainty in your data points through error bars
- You've determined a relationship (slope) between two variables
- Now, what is the uncertainty in that relationship (slope)?



## Line of Best Fit - Min/Max Slope - Video

# Maximum and Minimum Slopes Wilfrid Laurier University 

Terry Sturtevant<br>Wilfrid Laurier University

February 8, 2012

## Line of Best Fit - Min/Max

## Slope

- Used to determine the uncertainty of your slope
- Min/Max lines are drawn to give you the least/greatest possible slopes while still passing through the error 'area' rectangles

$$
m=\frac{\Delta y}{\Delta x}
$$




## Line of Best Fit - Min/Max Slope

- You can determine the points for the min/max slope lines manually, or use guess-and-check in Excel


## $m=\frac{\Delta y}{\Delta x}$




## Line of Best Fit - Min/Max Slope

- Once you have the points for the min/max slope lines, use Excel to compute their slopes


## $m=\frac{\Delta y}{\Delta x}$




## Line of Best Fit - Min/Max Slope

- The slope of your line defines the relationship between your $x$ and $y$ variables
- For example, if $y=7.63 x$, for every value of $x, y$ will be 7.63 times $x$




## Line of Best Fit - Min/Max

## Slope

- Min/max slope gives you the uncertainty of the relationship, the range of possible actual values
- "My constant of proportionality (slope) is 7.63, but could be as high as 8.12 or as low as 7.36."
- 7.63, +0.49/-0.27

OR

- $7.63 \pm 0.49$



## Uncertainties in Slope and Intercept - Your Choice

- Uncertainty of Slope
- Slope +max/-min
- Slope $\pm$ max difference
- Slope $\pm$ average difference
- Uncertainty of Intercept
- Intercept +max/-min intercept
- Intercept $\pm$ max difference in intercepts
- Intercept $\pm$ average difference of intercepts


## Uncertainties in Slope Propagation

- You also have the option of using standard propagation

$$
m=\frac{\Delta y}{\Delta x}
$$



## Uncertainties in Non-Linear Lines of Best Fit

## Uncertainties in Non-Linear Lines of Best Fit

Out of our league

## Essential Idea

- Scientists aim towards designing experiments that can give a "true value" from their measurements, but due to the limited precision in measuring devices, they often quote their results with some form of uncertainty.


## Understandings

- Random and systematic errors
- Absolute, fractional and percentage uncertainties
- Error bars
- Uncertainty of gradient and intercepts


## Applications And Skills

- Explaining how random and systematic errors can be identified and reduced
- Collecting data that include absolute and/or fractional uncertainties and stating these as an uncertainty range (expressed as: best estimate $\pm$ uncertainty range)


## Applications And Skills

- Propagating uncertainties through calculations involving addition, subtraction, multiplication, division and raising to a power
- Determining the uncertainty in gradients and intercepts


## Data Booklet Reference

- If $y=a \pm b$
- Then $\Delta y=\Delta a \pm \Delta b$
- If $y=\frac{a b}{c}$
- Then

$$
\frac{\Delta y}{y}=\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c}
$$

- If $y=a^{n}$
then

$$
\frac{\Delta y}{y}=\left|n \frac{\Delta a}{a}\right|
$$



## QUESTIONS?

## Homework

\# 23-34

## STOPPED HERE ON 8/27/14

