PhET Wave Reflection, Diffraction and Interference

This is an adaptation of a lab originally submitted to PhET by Marsh Harden (marshaharden@katyisd.org), of the Katy Independent School District, on 5/8/2008.

Before you do anything else, save this file in the following format, “LastnameFirstinitialPerXPhETWaves”

Everybody has at some time thrown a pebble into a puddle and observed the ripples spreading across the surface. Most people have gone to the beach and watched waves crash onto the shore and into barriers. Water waves and sound waves act in a similar way.

OBJECTIVE: To examine reflection, interference, and diffraction in two dimensions.

SAFETY: A computer screen on the wrong website will be shut down!

PROCEDURE:

2. Move the frequency marker and amplitude marker to the center of their scales.

3. Click on “Show Graph”. This shows a side view of the ripples leaving the disturbance caused by the drop of water.

4. Click on the measuring tape box. The placement of the two red x’s are used to measure the wavelength (\(\lambda\)).

5. Click on “Add Detector”. This gives you the ability to determine the number of waves passing in a second (f).

6. Drag the “Measuring Tape”, and the “Detector” to the white area out of the water.

7. **(2pts)** Click Pause, move the marker on “ROTATE VIEW to SIDE”. Using the measuring tape, Place the red X under Phet on top of a crest first, then move the other red X to the top of the next crest. The centimeters in the green box is the wavelength (\(\lambda\)). Record the distance in centimeters. Move the marker on “ROTATE VIEW back to TOP”.

 Answer:

8. **(2pts)** Click Play. Use the Detector to determine the number of waves that occur each second. (HINT: Each block in the Detector is one second.) Record the number of waves per second (cycles per second) or Hertz (Hz) (f)

 Answer:

9. **(2pts)** Using the frequency and wavelength data that you collected, calculate the velocity. SHOW YOUR WORK! Use UNITS ON ALL NUMBERS!

 Answer:

REFLECTION

10. Click the off button on the faucet.
11. Add a **vertical wall** (bottom right corner) across the entire width of the tank by clicking on “**One Slit**” then adjusting the “**Slit Width**” to zero.

12. Move the ‘**Barrier Location**’ marker to **6.2 cm**.

13. Click the ON button on the faucet. Click PAUSE after the wave returns back to the faucet. **Paste a screenshot of the REFLECTION pattern and then describe the wave pattern in complete sentences.**

 Screenshot:

 Answer:

WAVE INTERFERENCE

14. Click on “**Pause**”. Click on “**No barrier**”. Click on “**Two Drips**”. Adjust the “**Spacing**” to **5 cm**.

15. Click on “**Play**” and when the first wave reaches the far wall click on “**Pause**”. **Paste a screenshot of the WAVE INTERFERENCE pattern and describe the wave interaction in complete sentences.**

 Screenshot:

 Answer:

DIFFRACTION

16. Click on “**PAUSE**”. Click “**Reset All**”.

17. Increase the **amplitude and frequency markers to maximum** (far right).

18. Click on **ONE SLIT** to the **BARRIER** and adjust its size to **1.25 cm** (halfway between 0 and 2.5).

19. Move the **BARRIER** marker to **6.2 cm** from the faucet. Click on “**PLAY**”.

20. Allow the wave to reach the far wall and click on “**PAUSE**”. **Paste a screenshot of the DIFFRACTION pattern and describe the wave pattern in complete sentences.**

 Screenshot:

 Answer:

YOUR EXPERIMENT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

21. Click “**Reset All**”. Click “**Pause**”.

22. Set up a situation which has not been tried. Such as: What would happen if two slits were in the barrier instead of one? (Keep it simple.) **Write your question.**

 Answer:

23. Write your **hypothesis**. **Write a probable answer to your question or predict the outcome of the experiment.** (Draw what the wave patterns might look like, then write it in complete sentences.)

 Answer:
24. Write down all of the parameters (settings planned for the simulation) for simulation.

Answer:

25. Set the changes desired on the simulator and click “Play” to start the experiment. Collect data by pasting a screenshot of the wave pattern created. Describe the pattern in complete sentences.

Screenshot:

Answer:

26. Write a conclusion comparing your hypothesis to the data collected.

Answer:

SOUND - REPEAT STEPS 7 THROUGH 26 FOR SOUND, THEN ANSWER QUESTIONS 3 & 4.

1. Click on the ‘Sound’ tab and make sure that “Gray Scale” is clicked.

2. Move the frequency marker and amplitude marker to the center of their scales.

3. Do the steps 7-26 for sound. Do not forget your experiment.

7. BEFORE YOU CHANGE ANYTHING ELSE! **CALCULATE THE VELOCITY OF THE WAVES!**

 VELOCITY (m/s) = FREQUENCY (Hz) x WAVELENGTH (m) or \(V = f \lambda \)

8. Click Pause, move the marker on “ROTATE VIEW to **SIDE**”. Using the measuring tape, place the red X under Phet on top of a crest first, then move the other red X to the top of the next crest. The centimeters in the green box is the wavelength. Record the distance in centimeters (\(\lambda \)). Move the marker on “ROTATE VIEW back to **TOP**”.

Answer:

9. Click Play. Use the Detector to determine the number of waves that occur each second. (HINT: Each block in the Detector is one second.) Record the number of waves per second (cycles per second) or Hertz (Hz) (\(f \))

Answer:

10. Using the frequency and wavelength data that you collected, calculate the velocity. **SHOW YOUR WORK! Use UNITS ON ALL NUMBERS!**

Answer:

REFLECTION

11. Click the off button on the speaker.

11. Add a vertical wall (bottom right corner) across the entire width of the tank by clicking on “One Slit” then adjusting the “Slit Width” to zero.

12. Move the ‘Barrier Location” marker to 61.7 cm.

13. Click the ON button on the speaker. Click PAUSE after the wave returns back to the speaker. Paste a screenshot of the pattern REFLECTION.

Screenshot:
WAVE INTERFERENCE

14. Click on “Pause”. Click on “No barrier”. Click on “Two Speakers”. Adjust the “Spacing” to 50 cm.

15. Click on “Play” and when the first wave reaches the far wall click on “Pause”. Paste a screenshot of the pattern WAVE INTERFERENCE.

DIFFRACTION

16. Click on “PAUSE”. Click “Reset All”.

17. Increase the **amplitude and frequency** markers to maximum (far right).

18. Click on ONE SLIT to the BARRIER and adjust its size to 25 cm (halfway between 0 and 50).

19. Move the BARRIER marker to 61.7 cm from the faucet. Click on “PLAY”.

20. Allow the wave to reach the far wall and click on “PAUSE”. Paste a screenshot of the pattern DIFFRACTION.

YOUR EXPERIMENT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

21. Click “Reset All”. Click “Pause”.

22. Set up a situation which has not been tried. Such as: What would happen if two slits were in the barrier instead of one? (Keep it simple.) **Write your question.**

Answer:

23. Write your **hypothesis**. Write a probable answer to your question or predict the outcome of the experiment. (Draw what the wave patterns might look like, then write it in complete sentences.)

Answer:

24. **Write down** all of the parameters (settings planned for the simulation) for simulation.

Answer:

25. Set the changes desired on the simulator and click “Play” to start the experiment. Collect data by pasting a screenshot of the wave pattern created. Describe the pattern in complete sentences.

Screenshot:

Answer:

26. Write a conclusion comparing your hypothesis to the data collected.

Answer:

3. Click on “Particles”. Click on “Show Markers”.
4. **Describe** the movement of the markers. **What conclusion/inference** can you make about the movement of matter in a sound wave?

 Answer:

LIGHT – **REPEAT STEPS 7 THROUGH 26 FOR LIGHT, THEN ANSWER THE QUESTIONS 2 through 4 BELOW.**

1. Click on the ‘Light’ tab.
2. Move the **wavelength** marker to SPHS green and the **amplitude** marker to the center of its scale.
3. Do the steps 7-26 for sound. Do not forget your experiment.

 7. **BEFORE YOU CHANGE ANYTHING ELSE!** **CALCULATE THE VELOCITY OF THE WAVES!**

 \[
 \text{VELOCITY (m/s) = FREQUENCY (Hz) x WAVELENGTH (m)} \quad \text{or} \quad V = f \lambda
 \]

8. **Click Pause**, move the marker on “ROTATE VIEW to SIDE”. Using the measuring tape, place the red X under Phet on top of a crest first, then move the other red X to the top of the next crest. The centimeters in the green box is the wavelength. **Record** the distance in centimeters (\(\lambda\)). Move the marker on “ROTATE VIEW back to TOP”.

 Answer:

9. **Click Play**. Use the **Detector** to determine the number of waves that occur each second. (HINT: Each block in the Detector is one second.) **Record** the number of waves per second (cycles per second) or Hertz (Hz) (f)

 Answer:

10. Using the frequency and wavelength data that you collected, **calculate** the velocity. **SHOW YOUR WORK! Use UNITS ON ALL NUMBERS!**

 Answer:

REFLECTION

11. Click the **off button** on the light source.

12. Add a **vertical wall** (bottom right corner) across the entire width of the tank by clicking on “One Slit” then adjusting the “Slit Width” to zero.

13. Move the ‘**Barrier Location**’ marker to 2590 nm.

SCREENSHOT:

WAVE INTERFERENCE

14. **Click on “Pause”. Click on “No barrier”. Click on “Two Lights”. Adjust the “Spacing” to 2100 nm.**
15. Click on “Play” and when the first wave reaches the far wall click on “Pause”. Paste a screenshot of the pattern WAVE INTERFERENCE.

Screenshot:

DIFFRACTION

16. Click on “PAUSE”. Click “Reset All”.

17. Increase the **amplitude and frequency markers to maximum** (far right).

18. Click on ONE SLIT to the BARRIER and adjust its size to 1050 nm

19. Move the BARRIER marker to 2590 nm from the light source. Click on “PLAY”.

20. Allow the wave to reach the far wall and click on “PAUSE”. Paste a screenshot of the pattern DIFFRACTION.

Screenshot:

YOUR EXPERIMENT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

21. Click “Reset All”. Click “Pause”.

22. Set up a situation which has not been tried. Such as: What would happen if two slits were in the barrier instead of one? (Keep it simple.) Write your question.

Answer:

23. Write your hypothesis. **Write a probable answer to your question or predict the outcome of the experiment.** (Draw what the wave patterns might look like, then write it in complete sentences.)

Answer:

24. Write down all of the parameters (settings planned for the simulation) for simulation.

Answer:

25. Set the changes desired on the simulator and click “Play” to start the experiment. Collect data by pasting a screenshot of the wave pattern created. Describe the pattern in complete sentences.

Screenshot:

Answer:

26. Write a conclusion comparing your hypothesis to the data collected.

Answer:

1. After repeating the steps for waves, click “Pause”.

2. Move the wavelength marker to purple and click “Play”. Measure the wavelength between two crests with the measuring tape.

3. Move the wavelength marker to bright red and make the wavelength measurement again.

4. What conclusion/inference can you make about the wavelengths of color?

Answer:
OVERALL CONCLUSION:

1. Compare the data collected and drawn for waves, sound, and light. Draw a Venn diagram on your paper to make your comparisons. Yours would be larger.

ROOM FOR IMPROVEMENT

Comments:

When complete, E-mail to Mr. Smith @ smithky@pcsb.org
Ensure your filename is “FirstInitialLastNamePerXLabName”
The answers on this lab are a product of my own work and effort. Though I may have received some help in understanding the concepts and/or requirements, I did the work myself.

Student Signature (for electronic submission, type student number in lieu of signature)