\square Date:

PhET ELECTRIC FIELDS
 (1/2 point each, 15 points total)

Introduction (1pt): It can by rationalized that the most important concept in physical science is like things \qquad while opposite things \qquad . When working with static electric charges, like charges \qquad while opposite charges \qquad These charges can be as large as clouds of ionized gas in a nebula one million times the size of the earth, or as small as protons and electrons. The rule remains the same. In this lab, you will investigate how a charge creates a field around itself and how test charges behave when placed in that field.

Important Formulas: $F=E q \quad F=k \frac{q_{1} q_{2}}{d^{2}} \quad E=V / d$ $\mathrm{k}=9.00 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Procedure Part I:

- Go to http://phet.colorado.edu/en/simulation/charges-and-fields and select
- Place a 1 nC (nanoCoulomb) positive charge and E-Field sensor in the test area. Click \triangle Show E-field to observe the field lines in the E-field. Observe the sensor's arrow as you drag it around the in the field.
- The sensor's arrow illustrates the force of attraction or repulsion at a point in an electric field.
- (1pt) Replace the positive charge with a negative point charge. To remove charges, drag them back into their box. By convention, field arrows point \qquad a positive charge and \qquad a negative charge.

As the sensor gets closer to a point charge, the field strength created by that field \qquad

- Click on show numbers and tape measure to measure the distances from a field-creating charge to a test charge. The tape measure can be dragged to a specific distance and placed anywhere on the field.
- When measuring field strength, click plot to show lines of equipotential.
- (4pts) Complete the table below using a single positive or negative charge:

Test charge distance, \mathbf{m}	Field strength, V/m	Potential at location, V
1.0 m		
2.5 m		
	$1.1 \mathrm{~V} / \mathrm{m}$	
4.0 m		

- Add at least three charges, using both positive and negative charges. Move the voltage meter around and plot the lines of equipotential. Plot at least ten lines. Show the value of the potential on each line of equipotential.
- (4pts) Sketch the multi-charge system in the box to the right or paste a screenshot of your field.

Procedure Part II: http://phet.colorado.edu/en/simulation/electric-hockey Run Now!

- (1pt) So, using that wonderful principle that opposite charges \qquad while like charges \qquad play a little Electric Field Hockey.
- Setup your charges and go for the goal.

Electric Field Hockey

- Turning on the Field and Trace may make things a little easier.
- Reset the simulation to try again, with your charges in place.
- Challenge the other members of your lab group to duels.
- Challenge other lab groups. (no hockey fights please.)
- Try to use less than 12 charges total. (how few can you use?)
- (4pts avg) Paste a picture of your goal-scoring configuration in place of the box to the right. Scoring is as follows:
- Level:
- Level 1-1 point
- Level 2-2 points
- Level 3-3 points
- Charges:
- > $12-1$ point
- 7-12 - 2 points
- 0-6 - 3 points

> Paste a screen shot of your goal-scoring configuration using the least number of charges here.

Conclusion Questions and Calculations:

1. (1pt) Closer to a point charge, the electrostatic field created is stronger/weaker.
2. (1pt) Placed exactly between two oppositely charged point charges, a test charge (the sensor) will show zero / minimum / maximum force (N) or field strength (N/C).
3. (1pt) Placed exactly on a point charge, the sensor will show zero / minimum / maximum field strength.
4. (2pts) The point charges used in the simulation are $\pm 1.0 \times 10^{-9} \mathrm{C}$ (nanoCoulomb). If two such positive charges are placed 2.0 m away from each other, the force between them would
be... (use formula)
SHOW WORK HERE:
5. (2pts) What is the magnitude of the electric field produced 2.0 m away from one of the charges?

WORK HERE:
6. (2pts) A test charge of 4.5 C in a field of strength $2.2 \mathrm{~N} / \mathrm{C}$ would feel what force? \qquad
WORK:
7. (2pts) What is the value of the electric field when a -9.6 V potential is found 1.4 m from its center?

WORK:
8. (2pts) What is the electrostatic potential found .68 m from the center of a $2.3 \mathrm{~V} / \mathrm{m}$ field? WORK:
9. (2pts) A balloon is electrostatically charged with $3.4 \mu \mathrm{C}$ (microcoulombs) of charge. A second balloon 23 cm away is charged with $-5.1 \mu \mathrm{C}$ of charge. The force of attraction / repulsion between the two charges will be:

WORK:
10. (2pts) If one of the balloons has a mass of 0.084 kg , with what acceleration does it move toward or away from the other balloon?

WORK:

The answers on this lab are a product of my own work and effort. Though I may have received some help in understanding the concepts and/or requirements, I did the work myself.

Student Signature
(for electronic submission, type student number in lieu of signature)

ROOM FOR IMPROVEMENT

APPLICABILITY: This lab is best suited for (check all that apply):
Physics I Honors/ Pre-IB PhysicsIB Physics 2

IB Physics 3None of These Comments:

IMPROVEMENT: This lab can be improved by:
Comments:

When complete, either print a hardcopy and turn in or upload to ManageBac. Ensure your filename is "LastNameFirstinitialPerXLabName"

