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OPTION B-3:
 FLUIDS

Fluid Flow Compilation ~ Under Pressure2.wmv


Essential Idea: 

 Fluids cannot be modelled as point 
particles. Their distinguishable response to 
compression from solids creates a set of 
characteristics that require an in-depth 
study.



Nature Of Science:  

 Human understandings: Understanding 
and modelling fluid flow has been 
important in many technological 
developments such as designs of turbines, 
aerodynamics of cars and aircraft, and 
measurement of blood flow.



International-Mindedness: 

 Water sources for dams and irrigation rely 
on the knowledge of fluid flow. These 
resources can cross national boundaries 
leading to sharing of water or disputes 
over ownership and use.



Theory Of Knowledge:

 The mythology behind the anecdote of 
Archimedes’ “Eureka!” moment of discovery 
demonstrates one of the many ways scientific 
knowledge has been transmitted throughout 
the ages. 

 What role can mythology and anecdotes play 
in passing on scientific knowledge? 

 What role might they play in passing on 
scientific knowledge within indigenous 
knowledge systems?



Understandings:

 Density and pressure 

 Buoyancy and Archimedes’ principle 

 Pascal’s principle 

 Hydrostatic equilibrium 

 The ideal fluid 

 Streamlines 



Understandings:

 The continuity equation 

 The Bernoulli equation and the Bernoulli 
effect 

 Stokes’ law and viscosity 

 Laminar and turbulent flow and the 
Reynolds number



Applications And Skills:

 Determining buoyancy forces using 
Archimedes’ principle 

 Solving problems involving pressure, 
density and Pascal’s principle 

 Solving problems using the Bernoulli 
equation and the continuity equation



Applications And Skills:

 Explaining situations involving the 
Bernoulli effect 

 Describing the frictional drag force exerted 
on small spherical objects in laminar fluid 
flow 

 Solving problems involving Stokes’ law 

 Determining the Reynolds number in 
simple situations



Guidance:

 Ideal fluids will be taken to mean fluids 
that are incompressible and non-viscous 
and have steady flows 

 Applications of the Bernoulli equation will 
involve (but not be limited to) flow out of a 
container, determining the speed of a 
plane (pitot tubes), and venturi tubes 



Guidance:

 Proof of the Bernoulli equation will not be 
required for examination purposes 

 Laminar and turbulent flow will only be 
considered in simple situations 

 Values of R 103 <will be taken to represent 
conditions for laminar flow
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Utilization:

 Hydroelectric power stations 

 Aerodynamic design of aircraft and 
vehicles 

 Fluid mechanics is essential in 
understanding blood flow in arteries 

 Biomechanics (see Sports, exercise and 
health science SL sub-topic 4.3)



Aims:

 Aim 2: fluid dynamics is an essential part 
of any university physics or engineering 
course 

 Aim 7: the complexity of fluid dynamics 
makes it an ideal topic to be visualized 
through computer software



Reading Activity Questions?

Reading Activity Option B-3.docx


Pressure

 Pressure, P, is defined as force per unit area 
where the force is understood to be acting 
perpendicular to the surface area, A

A

F
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Pressure in Fluids

 Fluid exerts a pressure in all directions

 Fluid pressure is exerted perpendicular 
to whatever surface it is in contact with

 Fluid pressure increases with depth



Pressure in Fluids

 Think of a disk 5 cm (0.05 m) in diameter (A 
= πr2 = 1.96 cm2 = 0.00196 m2 )

 You place it in water 30 cm (0.30 m) below 
the surface

 The pressure on that disk is equal to the 
weight of a column of water that has a 5 cm 
diameter and is 30 cm high (h = height of 
water)



Pressure in Fluids

 Like a graduated cylinder

 Adisk = 0.00196 m2

 The volume of the cylinder is A x h (πr2h) = 589 
cm3 = 5.89 x 10-4 m3
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Pressure in Fluids

 Like a graduated cylinder

 Adisk = 0.00196 m2

 V = 5.89 x 10-4 m3

 m = 0.589 kg
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Pressure in Fluids

 Like a graduated cylinder

 Adisk = 0.00196 m2

 V = 5.89 x 10-4 m3

 m = 0.589 kg

 F = 5.78 N

 That’s way too much work!

 How about a formula?
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Pressure in Fluids

 Like a graduated cylinder

 P = 2.9 x 103 N/m2

 That’s way too much work!

 How about a formula? ghp
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Pressure in Fluids

 Like a graduated cylinder

 P = 2.9 x 103 N/m2

 That’s way too much work!

 How about a formula?
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Pressure in Fluids

 Pressure at equal depths within a uniform 
liquid is the same

 IMPORTANT:  The pressure the water exerts on 
an object at a certain depth is the same on all 
parts of a body.

 In other words, if you hold a cube 30cm under 
water, each side of that cube will feel the same 
pressure exerted on it – not just the top, but the 
bottom and all four sides!!!

ghpp  0



Pressure in Fluids

 It follows from this that a change in depth 
is directly proportional to a change in 
pressure

 Note:  An important assumption here is that 
the fluid is incompressible, because if it were 
compressible, the density would change 
with depth!
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Pressure in Fluids hgP  

Hydrostatic_Pressure_Demo_1.wmv


Pascal’s Principle

 The pressure applied to a confined fluid 
increases the pressure throughout the fluid 
by the same amount.

 Examples

 A cube at the bottom of a bucket of water.  It has 
the pressure of the water acting on it, but also the 
atmospheric pressure pushing on the water.

 The brake system in a car.  You apply pressure via 
the brake pedal and that pressure gets 
transmitted via a fluid to the brake pads on the 
wheel



Pascal’s Principle

 The pressure applied to a 
confined fluid increases the 
pressure throughout the 
fluid by the same amount.
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Pascal’s Principle

 Examples out
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Pascal’s Principle

 If I want the force applied to my 
brakes to be 10 times the force I 
apply to the pedal, by what 
factor would the diameter of 
the piston at the brakes exceed 
that of the piston at the brake 
pedal?
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Pascal’s Principle

 If I want the force 
applied to my brakes to 
be 10 times the force I 
apply to the pedal, by 
what factor would the 
diameter of the piston at 
the brakes exceed that of 
the piston at the brake 
pedal?
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Video: Archimedes Principle

Archimedes_Principle_1.wmv


Buoyancy

 Stuff floats

 Stuff in water seems lighter than stuff on land

 This is because the fluid is exerting a pressure 
on the object that opposes the gravity force 
(weight)

 Fluid pressure increases with depth

 When the fluid pressure equals the weight, 
the object will stop sinking



Buoyant Force

 The force of fluid pressure that opposes weight
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Buoyant Force

 The force of fluid pressure that opposes weight
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Buoyant Force

 The force of fluid pressure that opposes weight
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Buoyant Force

 The force of fluid pressure that opposes weight
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Archimedes’ Principle

 The force of fluid pressure that opposes weight
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 The volume of the 
cylinder displaces the 
same volume of water 
that was there before 
the cylinder was 
immersed



Archimedes’ Principle

 The force of fluid pressure that opposes weight
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 The buoyant force on a 
body immersed in a 
fluid is equal to the 
weight of the fluid 
displaced by that 
object



Fluids In 
Motion

 Fluid Dynamics – study of fluids in motion

 Hydrodynamics – study of water in motion

 Streamline or laminar flow – flow is 
smooth, neighboring layers of fluid slide by 
each other smoothly, each particle of the 
fluid follows a smooth path and the paths 
do not cross over one another



Fluids In 
Motion

 Turbulent flow – characterized by erratic, 
small whirlpool-like circles called eddy 
currents or eddies

 Eddies absorb a great deal energy through 
internal friction

 Viscosity – measure of the internal friction in 
a flow



Speed Changes In Changing 
Diameter Of Tubes

 Assumes laminar flow

 Flow rate – the mass (Δm) of fluid that 
passes through a given point per unit time 
(Δt)
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Speed Changes In Changing 
Diameter Of Tubes

 Mass is equal to density 
times volume
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Speed Changes In Changing 
Diameter Of Tubes
 The volume (V) of fluid 

passing that point in time 
(Δt) is the cross-sectional 
area of the pipe (A) times the 
distance (Δl) travelled over 
the time (Δt)
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Speed Changes In Changing 
Diameter Of Tubes

 The velocity is equal to the 
distance divided by the 
time so, mass flow rate 
becomes ρAv
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Speed Changes In Changing 
Diameter Of Tubes

 Since no fluid escapes, the mass flow rate 
at both ends of this tube are the same
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Speed Changes In Changing 
Diameter Of Tubes
 If we assume the fluid is incompressible, 

density is the same and, 
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Speed Changes In Changing 
Diameter Of Tubes
 When cross-sectional 

area is large, velocity is 
small. When the cross-
sectional area is small, 
velocity is high
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Speed Changes In Changing 
Diameter Of Tubes

 That’s why you put your 
thumb over the end of 
the hose to squirt 
people at car washes
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Bernoulli’s Equation

Roberto_Carlos_Impossible_Goal_1.wmv


Bernoulli’s Equation

 Daniel Bernoulli (1700-1782) is the only 
reason airplanes can fly

 Ever wonder why:
 The shower curtain keeps creeping toward 

you?

 Smoke goes up a chimney and not in your 
house?

 When you see a guy driving with a piece of 
plastic covering a broken car window, that 
the plastic is always bulging out?



Bernoulli’s Equation

 Ever wonder why:

 Why a punctured aorta will squirt blood up 
to 75 feet, but yet waste products can flow 
into the blood stream at the capillaries 
against the blood’s pressure?

 How in the world Roberto Carlos made the 
impossible goal?

 It’s Bernoulli’s fault



Bernoulli’s Principle

Bernoullis_Principle_1.wmv


Bernoulli’s Equation

 Bernoulli’s principle states, where the 
velocity of a fluid is high, the pressure is low, 
and where the velocity is low, the pressure is 
high

BLOWING PAPER DEMO

 Not as straight forward as it sounds

 Consider this,



Bernoulli’s Equation

 We just said that  as the fluid flows from left to 
right, the velocity of the fluid increases as the 
area gets smaller

 You would think the pressure would increase in 
the smaller area, but it doesn’t, it gets smaller

 But, the pressure in area 1 does get larger

How 
come?



Bernoulli’s Equation

 When you wash a car, your thumb cramps 
up holding it over the end of the hose.

 This is because of the pressure built up behind 
your thumb.



Bernoulli’s Equation
 If you stuck your pinky inside the hose, you 

would feel pressure at the tip of your finger, a 
decrease in the pressure along the sides of your 
finger, and an increase in the velocity of the 
water coming out of the hose.

 You would also get squirted in the face but that’s 
your own fault for sticking your finger in a hose!



Bernoulli’s Equation

 It makes sense from Newton’s Second Law

 In order for the mass flow to accelerate from 
the larger pipe to the smaller pipe, there 
must be a decrease in pressure
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Bernoulli’s Equation

 Assumptions:
 Flow is steady and laminar

 Fluid is incompressible

 Viscosity is small enough to be ignored

 Consider flow in the diagram below:



Bernoulli’s Equation
 We want to move the blue fluid on the left 

to the white area on the right
 On the left, the fluid must move a distance of Δl1

 Since the right side of the tube is narrower, the 
fluid must move farther (Δl2) in order to move 
the same volume that is in Δl1



Bernoulli’s Equation

 Work must be done to 
move the fluid along the 
tube and we have pressure 
available to do it
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Bernoulli’s Equation
 There is also work done by 

gravity (since the pipe has an 
increase in elevation) which acts 
on the entire body of fluid that 
you are trying to move

 Force of gravity is mg, work is 
force times distance, so:
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Bernoulli’s Equation

Total work done is then the sum of the three:
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Bernoulli’s Equation

Anything we can do to make this longer?

12222111

321

mgymgylAPlAPW

WWWW

T

T







Bernoulli’s Equation

Anything we can do to make this longer?
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Bernoulli’s Equation

Better, but it needs to be cleaned up a little.
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Bernoulli’s Equation

Manageable, 

1221

2

1

2

2

12222111

2

1

2

2

2

1

2

1

2

1

2

1

gygyPPvv

mgymgylAPlAPmvmv

 



but let’s make it 
look like 
something a 
little more 
familiar



Bernoulli’s Equation

Look familiar, 
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Applications: Atomizers and 
Ping Pong Balls



Applications: Airfoils



Pitot-Prandtl
Tube
 Measures airspeed 

by comparing static 
and dynamic 
pressure
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Viscosity

 A friction force between adjacent layers of 
fluid as the layers move past one another

 In liquids, it is mainly due to the cohesive 
forces between molecules

 In gases, it is caused by collisions between 
molecules.

 Coefficient of viscosity, η (lowercase eta) 
(Pa-s)



Viscosity

 Determined by measuring the force 
required to move a plate over a stationary 
one with a given amount of liquid between 
them



Coefficients of Viscosity

 Temperatures are specified because it has a 
strong effect on viscosity

 Viscosity for most fluids decreases rapidly 
with increase in temperature



Drag Force

 For a small sphere, the drag force is

 The net force on a sphere falling through a 
fluid is
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Terminal Speed

 Terminal speed occurs when the net force is 
equal to zero
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Turbulent Flow



Turbulent Flow

 Non-Viscous 
Laminar Flow

 Viscous Laminar 
Flow

 Turbulent Flow



Reynolds Number

 A dimensionless 
number usually 
associated with 
aerodynamics for 
calculating drag

 Reynolds number for a 
pipe is,

 Turbulence in pipes 
occurs at speeds when 
Reynolds number 
exceeds 1000
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Understandings:

 Density and pressure 

 Buoyancy and Archimedes’ principle 

 Pascal’s principle 

 Hydrostatic equilibrium 

 The ideal fluid 

 Streamlines 



Understandings:

 The continuity equation 

 The Bernoulli equation and the Bernoulli 
effect 

 Stokes’ law and viscosity 

 Laminar and turbulent flow and the 
Reynolds number



Data Booklet Reference:
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Applications And Skills:

 Determining buoyancy forces using 
Archimedes’ principle 

 Solving problems involving pressure, 
density and Pascal’s principle 

 Solving problems using the Bernoulli 
equation and the continuity equation



Applications And Skills:

 Explaining situations involving the 
Bernoulli effect 

 Describing the frictional drag force exerted 
on small spherical objects in laminar fluid 
flow 

 Solving problems involving Stokes’ law 

 Determining the Reynolds number in 
simple situations



Guidance:

 Ideal fluids will be taken to mean fluids 
that are incompressible and non-viscous 
and have steady flows 

 Applications of the Bernoulli equation will 
involve (but not be limited to) flow out of a 
container, determining the speed of a 
plane (pitot tubes), and venturi tubes 



Guidance:

 Proof of the Bernoulli equation will not be 
required for examination purposes 

 Laminar and turbulent flow will only be 
considered in simple situations 

 Values of R 103 <will be taken to represent 
conditions for laminar flow



Essential Idea: 

 Fluids cannot be modelled as point 
particles. Their distinguishable response to 
compression from solids creates a set of 
characteristics that require an in-depth 
study.



QUESTIONS?
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