

DEVIL PHYSSOS
THE BADDEST CLASS ON CAXMTUS

IR PHFYSICS

LSN 2-1B, MOTION
 - UNIFORMLY ACCELERATED MOTION
 - ACCELERATION OF FREE FALL

Questions From Reading Activity?

- Anyone still not know how to do Cornell notes?

Essential Idea:

- Motion may be described and analyzed by the use of graphs and equations.

Nature Of Science:

- Observations.
- The ideas of motion are fundamental to many areas of physics, providing a link to the consideration of forces and their implication.
- The kinematic equations for uniform acceleration were developed through careful observations of the natural world.

International-Mindedness:

- International cooperation is needed for tracking shipping, land-based transport, aircraft and objects in space.

Understandings:

- Acceleration
- Graphs describing motion
- Equations of motion for uniform acceleration

Applications And Skills:

- Determining instantaneous and average values for acceleration
- Solving problems using equations of motion for uniform acceleration
- Sketching and interpreting motion graphs
- Determining the acceleration of free-fall experimentally

Guidance:

- Calculations will be restricted to those neglecting air resistance.

Data Booklet Reference:

$$
\begin{aligned}
& v=u+a t \\
& s=u t+1 / 2 a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{1+u \bar{t}}{2}
\end{aligned}
$$

Utilization:

- Biomechanics (see Sports, exercise and health science SL sub-topic 4.3)
- Quadratic functions (see Mathematics HL sub-topic 2.6; Mathematics SL sub-topic 2.4; Mathematical studies SL sub-topic 6.3)
- The kinematic equations are treated in calculus form in Mathematics HL sub-topic 6.6 and Mathematics SL sub-topic 6.6

Aims:

- Aim 2: much of the development of classical physics has been built on the advances in kinematics

Aims:

- Aim 6: experiments, including use of data logging, could include (but are not limited to): determination of g , estimating speed using travel timetables, analyzing projectile motion, and investigating motion through a fluid

Aims:

- Aim 7: technology has allowed for more accurate and precise measurements of motion, including video analysis of real-life projectiles and modeling/ simulations of terminal velocity

Introductory Video

Average acceleration

- the change in velocity divided by the time required to make this change

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v-u}{t-t_{0}}
$$

- the bar over the a indicates average
- Δ means "change in"

Average acceleration

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v-u}{t-t_{0}}
$$

- acceleration can be either positive or negative
- positive acceleration means velocity is increasing
- negative acceleration means velocity is decreasing
- negative acceleration is often called deceleration

Units

- typical units for acceleration are $\mathrm{m} / \mathrm{s}^{\mathbf{2}}$

- but can be any unit of length over, or per, unit of time squared

Instantaneous Acceleration

- the change in velocity over an infinitesimally short period of time

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

SAMPLE PROBLEM 1

- I am driving at $15 \mathrm{~m} / \mathrm{s}$
behind a big truck. I punch the accelerator to pass the truck and
18 seconds later I am at $25 \mathrm{~m} / \mathrm{s}$. What was my average acceleration?

SAMPLE PROBLEM 1

- I am driving at $15 \mathrm{~m} / \mathrm{s}$ behind a big truck. I punch the accelerator to pass the truck and 18 seconds later I am at 25 m/s. What was my average acceleration?

SAMPLE PROBLEM 2

- While travelling at 30m/s, I decide to stop using an average acceleration (deceleration) of -
$2.13 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take me to stop?

SAMPLE PROBLEM 2

- While travelling at 3om/s, I decide to stop using an average acceleration
(deceleration) of -
$2.13 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take me to stop?

$$
\begin{aligned}
& v_{0}=30 \mathrm{~m} / \mathrm{s} \\
& \bar{a}=-2.13 \mathrm{~m} / \mathrm{s}^{2} \\
& v=0 \\
& t_{0}=0, v=0 \\
& \bar{a}=\frac{v-u}{t-t_{0}} \\
& \bar{a}=\frac{-u}{t} \\
& t=\frac{-u}{\bar{a}}=\frac{-30}{-2.13}=14.1 \mathrm{~s}
\end{aligned}
$$

Uniformly Accelerated Motion

- occurs when acceleration is constant and in a straight line
- Assume that we are starting at a time of zero, the equation for constant acceleration becomes

- (no bar over a because it is now constant instead of an average)

How fast?

- A common problem is to find the velocity after an object has accelerated for a given period of time.
- To do this, we solve the constant acceleration equation for velocity:

How fast?

- A common problem is to find the velocity after an object has accelerated for a given period of time.
- To do this, we solve the constant acceleration equation for velocity:

$$
\begin{aligned}
& a=\frac{v-u}{t} \\
& a t=v-u
\end{aligned}
$$

$$
u+a t=v
$$

$$
v=u+a t
$$

Where we be?

- Next, we will find position after traveling at a certain average velocity for a given period of time:
- To do this, we solve the average velocity equation for final position:

Where we be?

- Next, we will find position after traveling at a certain average velocity for a given period of time:
- To do this, we solve the average velocity equation for final position:

Where we be?

$$
x=x_{0}+\bar{v} t
$$

- Next, we will find position after traveling at a certain average velocity for a given period of time:
- Next, we clean it up and IBalize it

Where we be?

- Now we will find the position of an object after undergoing constant acceleration for a given time, t

Where we be?

- Now we will find the position of an object after undergoing constant acceleration for a given time, \mathbf{t}
- Average velocity is the velocity midway between initial and final velocities:

Where we be?

- Now we will find the position of an object after undergoing constant acceleration for a given time, t
- This can be substituted into our equation for displacement:

$$
\begin{aligned}
& \bar{v}=\frac{v+u}{2} \\
& x=x_{0}+\bar{v} t
\end{aligned}
$$

$$
v+u
$$

$$
x=x_{0}+\frac{v}{2} t
$$

$$
2
$$

Where we be?

- Now we will find the position of an object after undergoing constant acceleration for a given time, t
- We can then substitute our equation for vinto the above equation:

$$
\begin{aligned}
& x=x_{0}+\frac{v+u}{2} t \\
& v=u+a t \\
& x=x_{0}+\frac{u+a t+u}{2} t
\end{aligned}
$$

$$
x=x_{0}+\frac{2 u}{2} t+\frac{a t}{2} t
$$

$$
x=x_{0}+u t+1 / 2 a t^{2}
$$

Where we be?

- Now we will find the position of an object after undergoing constant acceleration for a given time, t
- The IB Data Guide equation is given in terms of displacement,

$$
\begin{aligned}
& s=x-x_{0} \\
& x=x_{0}+u t+1 / 2 a t^{2} \\
& x-x_{0}=u t+1 / 2 a t^{2} \\
& s=u t+1 / 2 a t^{2}
\end{aligned}
$$ S

Where we be?

- We now derive a fourth equation that is useful when
elapsed time is not known. We start at a point near the beginning of the last derivation:

Where we be?

- We now derive a fourth equation that is useful when elapsed time is not known. We start at a point near the beginning of the last derivation:
- What happens next, Batman?

$$
\begin{aligned}
& x=x_{0}+\frac{v+u}{2} t \\
& v=u+a t \\
& \frac{v-u}{}=t
\end{aligned}
$$

$$
a
$$

$$
x=x_{0}+\left[\frac{v+u}{2}\right]\left[\frac{v-u}{a}\right]
$$

Where we be?

- We now derive a fourth equation that is useful when elapsed time is not known. We start at a point near the beginning of the last derivation:

$$
\begin{aligned}
& x=x_{0}+\left[\frac{v+u}{2}\right]\left[\frac{v-u}{a}\right] \\
& x=x_{0}+\left[\frac{v^{2}-u^{2}}{2 a}\right] \\
& 2 a<-x_{0}=v^{2}-u^{2} \\
& v^{2}=u^{2}+2 a s
\end{aligned}
$$

Summary of 1-dimensional motion at constant acceleration:

- The following four equations apply for linear motion when a is constant:

$$
v=u+a t
$$

$$
s=u t+1 / 2 a t^{2}
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
s=\underline{\imath+u \bar{t}}
$$

$$
2
$$

Let’s Go Vertical!

- For vertical freefall motion, the acceleration of the object is due to the acceleration due to gravity, g , and on average, the value of g at the surface of the earth is $9.81 \mathrm{~m} / \mathrm{s}^{2}$
- To properly orient to the vertical direction, we would change all of our x 's to y 's, but since IB uses displacement s, this point is moot
- Our four equations then become:

Let’s Go Vertical!

Vertical

$$
\begin{aligned}
& v=u+a t \\
& s=u t+1 / 2 a t^{2} \\
& s=\frac{1+u}{2} t \\
& v^{2}=u^{2}+2 a s
\end{aligned}
$$

$$
\begin{aligned}
& v=u+g t \\
& s=u t+1 / 2 g t^{2} \\
& s=\frac{1+u}{2} t \\
& v^{2}=u^{2}+2 g s
\end{aligned}
$$

Note: IB Data Guide does not differentiate between vertical and horizontal!

Graphical Analysis

Graphical Analysis

Analysis of Graphs: s vs t

Analysis of Graphs: s vs t

Analysis of Graphs: v vs t

Analysis of Graphs: v vs t

Analysis of Graphs: a vs t

Graphical Analysis

Acceleration Due To Gravity

- Since the earth is rotating, why don't we all fly off into space like a kid falling off a merry-go-round?

Acceleration Due To Gravity

- Law of gravitational attraction:

- What order of magnitude is the force?

Acceleration Due To Gravity

- Law of gravitational attraction:

- What order of magnitude is the force?

$$
F=\$.67 \times 10^{-11} \frac{\left(.98 \times 10^{24} 00^{-}\right.}{\frac{\left(.38 \times 10^{6}\right.}{2}}=881 \mathrm{~N}
$$

Acceleration Due To Gravity

- Law of gravitational attraction:

$$
F=G \frac{M m}{r^{2}}
$$

- What order of magnitude is the force?

$$
\begin{aligned}
& F=\boldsymbol{\phi} .67 \times 10^{-11} \frac{\left(.98 \times 10^{24}\right.}{\left(0.38 \times 10^{6}\right.}{ }^{2}, \\
& F=m a=90 \times 9.81=883 \mathrm{~N}
\end{aligned}
$$

Acceleration Due To Gravity

- Law of gravitational attraction:

- Is acceleration due to gravity $9.81 \mathrm{~m} / \mathrm{s}^{2}$ everywhere on earth? If not (andl wouldn't be asking ifit was), why not?

Understandings:

- Acceleration
- Graphs describing motion
- Equations of motion for uniform acceleration

Data Booklet Reference:

$$
\begin{aligned}
& v=u+a t \\
& s=u t+1 / 2 a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\frac{1+u \bar{t}}{2}
\end{aligned}
$$

Applications And Skills:

- Determining instantaneous and average values for acceleration
- Solving problems using equations of motion for uniform acceleration
- Sketching and interpreting motion graphs
- Determining the acceleration of free-fall experimentally

Essential Idea:

- Motion may be described and analyzed by the use of graphs and equations.

QUESTIONS?

Homework

Pg 53-57 \#5-24

Do you want to skip any?

