

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS

AP PHYS9CS

TSOKOS LESSON 10-11 TO 10-12

10-11: VISCOSITY 10-12: FLOW IN TUBES: POISEUILLE'S EQUATION, **BLOOD FLOW**

Objectives

 Be flexible because objectives in this section are somewhat fluid at this juncture.

Reading Activity Questions?

Viscosity

- A friction force between adjacent layers of fluid as the layers move past one another
- In liquids, it is mainly due to the cohesive forces between molecules
- In gases, it is caused by collisions between molecules.
- <u>Coefficient of viscosity</u>, η (lowercase eta) (Pa-s)

 Determined by measuring the force required to move a plate over a stationary one with a given amount of liquid between them

Moving plate v		
Fluid 誟	Velocity gradient	
Stationary plate		

Viscosity

 Determined by measuring the force required to move a plate over a stationary one with a given amount of liquid between them

$$F = \eta A \frac{v}{l}$$
$$\frac{F}{A} \frac{l}{v} = \eta$$

Viscosity

- Units for η (eta) are
 N·s/m² or Pa·s
- CGS is dyne-s/cm² which is called a poise (P)
- 100 centipoise (cP) = 1P

 $F = \eta A$ F'

Coefficients of Viscosity

	Tomporature	Coofficient of Minerit	
Manual	(°C)	$\eta (Pa \cdot s)^{\dagger}$	
Water	0	1.8×10^{-3}	
	20	1.0×10^{-3}	
	100	$0.3 imes10^{-3}$	
Whale blood	37	$\approx 4 \times 10^{-3}$	
Blood plasma	37	$\approx 1.5 \times 10^{-3}$	
Entry alcohol	20	1.2×10^{-3}	
Engine oil (SAE 10)	30	200×10^{-3}	
Eligerine	20	1500×10^{-3}	
Mir	20	0.018×10^{-3}	
Hdrogen	0	0.009×10^{-3}	
Water vapor	100	0.013×10^{-3}	

Coefficients of Viscosity

- Temperatures are specified because it has a strong effect on viscosity
- Viscosity for most fluids decreases rapidly with increase in temperature

TABLE 10-3 Coefficient of Viscosity for Various Fluids		
Buid	Temperature (°C)	Coefficient of Viscosity, η (Pa·s) [†]
Water	0	1.8×10^{-3}
	20	1.0×10^{-3}
	100	$0.3 imes 10^{-3}$
Whole blood	37	$\approx 4 \times 10^{-3}$
Blood plasma	37	$\approx 1.5 \times 10^{-3}$
Entry alcohol	20	1.2×10^{-3}
Engine oil (SAE 10)	30	200×10^{-3}
Gibcerine	20	1500×10^{-3}
Mir	20	0.018×10^{-3}
Hidrogen	0	0.009×10^{-3}
Willer vapor	100	0.013×10^{-3}

- Without viscosity, fluids could flow freely without an applied force
- Because of viscosity, a pressure difference between the ends of the tube are necessary to cause the fluid to flow

Rate of flow of a fluid depends on:

- Viscosity
- Pressure difference
- Dimensions of the tube
- Poiseuille's Equation assumes
 - Fluid is incompressible
 - Laminar flow

$$Q = \frac{\pi r^4 (P_1 - P_2)}{8\eta L}$$

- Q is the volume rate of flow in m³/s
- r is the inside radius of the tube
- L is the length of the tube
- P₁-P₂ is the pressure difference between the ends
- η is the coefficient of viscosity

$$Q = \frac{\pi r^4 (P_1 - P_2)}{8\eta L}$$

- Q, the volume rate of flow is
 - Directly proportional to the pressure difference
 - Inversely proportional to the viscosity and length of the tube
 - Directly proportional to the <u>fourth</u> power of the radius

$$Q = \frac{\pi r^4 (P_1 - P_2)}{8\eta L}$$

- Q, the volume rate of flow is
 - Directly proportional to the *fourth* power of the radius
- Do blood vessels have constant diameter?

$$Q = \frac{\pi r^4 (P_1 - P_2)}{8\eta L}$$

- Q, the volume rate of flow is
 - Directly proportional to the *fourth* power of the radius
- Do blood vessels have constant diameter?
 - Blood vessel diameter decreases as they branch out
 - The body controls blood vessel diameter by bands of muscles surrounding the arteries
 - Arteriosclerosis and cholesterol buildup decrease diameter forcing a higher pressure gradient for same blood flow

QUESTIONS?

Homework

#51-57