

DEVGL PHYSSOCS

THE BADDEST CLASSONCAXPTS

AD PHYSICS

TSOKOS LESSON 10-11 TO 10-12

10-11: VISCOSITY
 10-12: FLOW IN TUBES:
 POISEUILLE'S EQUATION, BLOOD FLOW

Objectives

- Be flexible because objectives in this section are somewhat fluid at this juncture.

Reading Activity Questions?

Viscosity

- A friction force between adjacent layers of fluid as the layers move past one another
- In liquids, it is mainly due to the cohesive forces between molecules
- In gases, it is caused by collisions between molecules.
- Coefficient of viscosity, η (lowercase eta) (Pa-s)

Viscosity

- Determined by measuring the force required to move a plate over a stationary one with a given amount of liquid between them

Viscosity

- Determined by measuring the force required to move a plate over a stationary one with a given amount of

$$
F=\eta A \frac{v}{l}
$$

Fl $=\eta$
Av liquid between them

Viscosity

- Units for η (eta) are N-s/m ${ }^{2}$ or Pa-s

$$
F=\eta A \frac{v}{l}
$$

- CGS is dyne-s/cm² which is called a poise (P)
- 100 centipoise $(c P)=1 P$

Coefficients of Viscosity

ABLE 10-3 Coefficient of Viscosity for Various Fluids

Thiid \begin{tabular}{c}
Temperature

$\left({ }^{\circ} \mathbf{C}\right)$

\quad

Coefficient of Viscosity,

$\boldsymbol{\eta}(\mathbf{P a} \cdot \mathbf{s})^{\dagger}$
\end{tabular}

Coefficients of Viscosity

- Temperatures are specified because it has a strong effect on viscosity
- Viscosity for most fluids decreases rapidly with increase in temperature

Thild	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Coefficient of Viscosity, $\boldsymbol{\eta}(\mathrm{Pa} \cdot \mathrm{s})^{\dagger}$
Werer	0	1.8×10^{-3}
	20	1.0×10^{-3}
	100	0.3×10^{-3}
Whale blood	37	$\approx 4 \times 10^{-3}$
Hood plasma	37	$\approx 1.5 \times 10^{-3}$
Etyl alcohol	20	1.2×10^{-3}
Eine oil (SAE 10)	30	200×10^{-3}
Incerine	20	1500×10^{-3}
Hr	20	0.018×10^{-3}
fitrogen	0	0.009×10^{-3}
Wrer vapor	100	0.013×10^{-3}

Flow In Tubes: Poiseuille’s Equation

- Without viscosity, fluids could flow freely without an applied force
- Because of viscosity, a pressure difference between the ends of the tube are necessary to cause the fluid to flow

Flow In Tubes: Poiseuille's Equation

- Rate of flow of a fluid depends on:
- Viscosity
- Pressure difference
- Dimensions of the tube
- Poiseuille's Equation assumes
- Fluid is incompressible
- Laminar flow

Flow In Tubes: Poiseuille's Equation

- Q is the volume rate of flow in $\mathrm{m}^{3 / \mathrm{s}}$
$\square r$ is the inside radius of the tube
- L is the length of the tube
- $P_{1}-P_{2}$ is the pressure difference between the ends
η is the coefficient of viscosity

Flow In Tubes: Poiseuille’s Equation

- O , the volume rate of flow is
- Directly proportional to the pressure difference
- Inversely proportional to the viscosity and length of the tube
- Directly proportional to the fourth power of the radius

Flow In Tubes: Poiseuille's Equation

- Q , the volume rate of flow is
- Directly proportional to the fourth power of the radius
- Do blood vessels have constant diameter?

Flow In Tubes: Poiseuille’s Equation

$$
Q=\frac{\pi r^{4}\left(P_{1}-P_{2}\right)}{8 \eta L}
$$

- O , the volume rate of flow is
- Directly proportional to the fourth power of the radius
- Do blood vessels have constant diameter?
- Blood vessel diameter decreases as they branch out
- The body controls blood vessel diameter by bands of muscles surrounding the arteries
Arteriosclerosis and cholesterol buildup decrease diameter forcing a higher pressure gradient for same blood flow

QUESTIONS?

Homework

\#51-57

