IB PHYSICS -1

Name:

Period: _____ Date: _

BADDEST CLASS ON CAMPUS

PHYS9CS DAY AT BUSCH GARDENS DATA COLLECTION WORKSHEET

General Guidelines:

- 1. Data collection is a group effort among your lab team. Completion of the lab is an individual effort. I expect to see identical data between the members of each group. I do not expect to see identical data on the reports of others outside your group and I do not expect to see identical or paraphrased answers on the final report.
- 2. Your signature at the end of your report affirms that the work on your report is your own. Any instances of cheating will be referred to the IB administrator for disciplinary action.
- 3. You are expected to collect data for the three primary rides assigned to your group. If one of the assigned rides is closed, you can substitute the 4th ride for the closed ride. There is no excuse for completing the data collection on your assigned rides. Failure to collect the required data will result in a reduced grade on your final report. Once you have completed the data collection for your assigned rides, you are free to do whatever you want to do until departure time.
- 4. If you do not like to ride roller coasters, you may use the data collected from your teammates.
- 5. Save this Data Collection Worksheet and attach it to the back of your final report.

IB Physics 1					
#	Team Name	Team Members	Primary Rides	Backup Rides	
			Scorpion	Kumba	
1.			Montu	SheiKra	
			Log Flume	Phoenix	
			Kumba	Cheetah Hunt	
2.			SheiKra	Scorpion	
			Phoenix	Tidal Wave	
			Cheetah Hunt	Montu	
3.			Scorpion	Kumba	
3.			Tidal Wave	Log Flume	
			Montu	SheiKra	
4.			Kumba	Cheetah Hunt	
4.			Log Flume	Phoenix	
			SheiKra	Scorpion	
5.			Cheetah Hunt	Montu	
5.			Phoenix	Log Flume	

LOG FLUME

WHAT TO MEASURE OFF THE RIDE

- 1. Time the log from the beginning of the splash to the end. This will be during the period that the log is in the narrow portion of the trough at the end of the hill.
- 2. Measure the time that it takes the log to pass a point at the end of the trough.

DATA TABLE

	#1	# 2	# 3	Average Time
Time from				
beginning to				
end of splash				
Time for the log				
to pass a point				
at the end of the				
trough				

IF YOU DIDN'T RIDE THE LOG FLUME: BASIC

 Measure the time on the last drop for a log to go between light pole A and the beginning of the splash B. (See picture on the front page of Log Flume: Basic).

Time from A to B		Average Time
A 0 B		

PHOENIX

WHAT TO NOTICE ON THE RIDE

- 1. Notice where the ride makes you feel heavy and where the ride makes you feel light.
- 2. When you are upside down, pay attention to your observations and feelings.
- ***PHYSICS DAYS ONLY: Sit on the row in the middle of the boat and note the largest G Force, as indicated on the mounted G Force Meter. (Use your measurement and that of two friends) Record it below.

	#1	#2	#3	Average
G Force				

WHAT TO MEASURE OFF THE RIDE

- 1. Measure the time for the Phoenix to pass a point at the bottom of its swing. (Measure from one support beam to the other.)
- Measure the drop time for the Phoenix. (Pick a cycle where the ride moves slow at the top but doesn't stop.)

DATA TABLE

	Time #1	Time #2	Time#3	<u>Average Time</u>
Time to pass at				
bottom				
Drop time				

TIDAL WAVE

WHAT TO DO OFF THE RIDE

- 1. Measure the distance of the splash. (The posts in the water are 0.8 meters apart.)
- 2. Measure the time that it takes the boat to pass a fixed point after the splash is over.

DATA TABLE

	, # 1	#2	# 3	Average
Distance of the splash				
Time to pass a				
fixed point after				
the splash				

IF YOU DIDN'T DO TIDAL WAVE: BASIC

 Time the boat from A to B at the bottom of the drop. (See picture on front page of Tidal Wave Basic.)

Time from		Average Time
AюB		

2. Given that the distance from A to B is 10.9 m, compute the speed of the boat at the bottom of the hill.

Speed at bottom of hill

3. Ask someone for their Horizontal G Force Meter measurement.

Horizontal G Force _____

SCORPION

WHAT TO MEASURE OFF THE RIDE

- 1. Measure the time for the coaster to pass a point at the top of the vertical loop.
- 2. Measure the time for the coaster to pass a point on the top horizontal loop near the end of the ride.
- 3. Measure the angle of elevation of the top of the coaster hill; walk back a fixed distance and then measure the new angle of elevation

	DATA TABLE				
	#1	# 2	#3	, Average	
Time to pass a					
point at the top					
of the loop					
Time to pass a					
point on the top					
horizontal loop					
Initial angle					
Fixed Distance					
Final angle					

WHAT TO DO IF YOU DIDN'T DO SCORPION BASIC

1. Measure the time for the coaster to pass a point at the bottom of the first hill.


Time to pass a		Average Time
point at hebottom		-
of thehill		

2. Find the speed of the coaster at the bottom of the first hill given that the length of the coaster = 10.7 m

MONTU

WHAT TO DO OFF THE RIDE

 Measure the time for the coaster to pass between post A and post C at the hill bottom following the Immelman, where Post A is the second post in the grass and post B is the lowest point of the track. (Start your stopwatch when the front car passes post A, and stop it when the front car passes post C).

Time to pass		Average Time
between A and		
С		

WHAT TO DO IF YOU DIDN'T RIDE MONTU: BASIC

1. Measure the time for the coaster to pass the top of the second vertical loop (#9).

Time to pass		Average Time
the top of the		
vertical loop		

2. Given that the length of the coaster is 11.6 m, find the speed of the coaster at the top of the loop.

WHAT TO DO ON THE RIDE (Physics Days Only)

 Sit in the second row where you can see the mounted accelerometer, and note the G Force at the bottom of the hill following the Immelman and at the top of the second loop. Take three readings yourself or use your reading and that of two friends.

	#1	#2	#3	Average		
Bottom of hill						
Top of loop						

DATA TABLE

KUMBA

WHAT TO DO ON THE RIDE

- Ride the coaster near the front and then again near the back. Notice the differences at the tops and bottoms of the hills, especially in the Cobra Roll and in the Vertical Loop.
- On Physics Days Only: Sit in the second row, in view of the mounted G Force Meter, and record the G Force at the following locations: bottom of the first hill; top of the vertical loop; top of the first confiscrew; carrousel. Record three readings if possible (or use yours and those of two friends) and find the

average.

WHAT TO MEASURE OFF THE RIDE

- Time the descent of the first car from the top of the Cobra Roll to the lowest point. Then do the same thing for the last car. (This is most easily done on the bridge to the Congo)
- Measure the time it takes the coaster to pass the top of the vertical loop. (Start the stopwatch when the front of the first car reaches the top of the loop, and stop the stopwatch when the back of the last car reaches the top of the loop.)

DATATABLE				
	<i>‡</i> 1	# 2	#3	Average Time
Time of descent				
of first car				
Time of descent				
of last car				
Time to pass				
the top of the				
vertical loop				

DATA TABLE

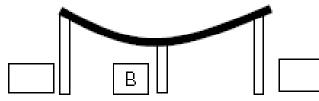
Physics Day Only Ride Data

	# 1	# 2	#3	Average
Bottom of first				
hill				
Top of vertical				
loop				
Top of first				
conkscrew				
carrousel				

WHAT TO DO IF YOU DIDN'T DO KUMBA: BASIC

1. Measure the time it takes the coaster to pass the top of the first conkscrew.

Time to pass		Average time
the top of the		
corkscrew		


SHEIKRA

WHAT TO NOTICE ON THE RIDE

- 1. Notice your feelings as the coaster "splashes" through the water.
- 2. Pay attention to which point on the ride has the most intense G Forces.

WHAT TO NOTICE OFF THE RIDE

1. Time the coasterial the bottom of the first hill between posts A and C.

2. After the coaster goes underwater, time it between the two blue posts at its highest point.

3. Time the splash of the water brake.

DATA TABLE

	#1	#2	#3	Average
Between				
A and C				
Between two				
blue posts				
Water brake				

CHEETAH HUNT

ELEMENTS OF THE RIDE

1 st Launch:	Acceleration in the Station
Overbanked Turn:	Immediately after 1 * launch. Big looping turn.
2 nd Launch:	Acceleration before the Tower
Tower:	You'll come down the tower and into a trench
Outbound Twister	Parabolic hill with a twist up top. You're going over the skyride
Heart]ine Ro]]:	Upside down with the heart line as the pivot
Brake Block:	Relatively flat, where the coaster can be stopped if needed
Serpentine turns:	Like a snake, undulating back and forth
3 rd Launch:	Acceleration before Air Time Hill
Ajr Time Hj]]:	Parabolic Hill with a weightless sensation
Inbound Twjster: Trajn Track Hj]], and	Sometimes called the over and under then Sharp Left Turn into the brakes at the end.

RF1 (Right Front seat of the 1st coaster car in the four car train) RR4 (Right Rear seat of the 4th coaster car in the four car train)

WHAT TO DO AND NOTICE ON THE RIDE

- 1. Ride in the first car of the train and the last car of the train. Notice any differences in where you feel the heaviest on the ride.
- There are two trains loaded at a time. Ride in the front train, and later ride in the second train. Notice any differences on the first launch.

WHAT TO MEASURE OFF THE RIDE

- 1. Time the coaster train between the highest two posts off the Outbound Twister (this is just after you come down from the tower). Make three measurements and compute the average.
- 2. Measure the front to back time of the coaster train as it passes the first post at the top of the tower.

	#1	#2	#3	Average
Time between posts of the Outbound Twister				
Front to back time a the top of the tower				

Data

PARK INFORMATION

Busch Gardens[®] Tampa will open one hour early on December 4, 2015 exclusively for Physics Day students. Physics students will get one hour of exclusive park ride time, interactive physics stations located around the park, plus a live physics interactive show. Accelerometers are even mounted on select rides for student use. Students will have the opportunity to experience world-class roller coasters and make some of their physics calculations without having to wait in line.

Activity Stations:

- Station 1: This Bites Students will learn the physics behind the bite force of some of the world's strongest carnivores.
- Station 2: I Feel the Need for Speed Students will learn how to clock an animal's speed by measuring it's body and stride lengths.
- Station 3: The Physics of Superman Students will take a closer look at the biomechanics of animal movement and discover what it would take for humans to have the same physical abilities, particularly the ability of flight.

Demonstration Stations:

- Station 4: The Power of Oobleck Students gain "hands-in" knowledge of this and other mysterious non-Newtonian fluids to learn about their unique properties that seem to defy Newton's Laws.
- Station 5: That's How We Roll Explore conservation of energy and magnetic braking through hands-on challenges at this SheiKra[®] station.

General Guidelines:

- Students should work in groups. Each group should have a Vertical G Force Meter, a Horizontal G Force Meter, and a Stopwatch. These instruments cannot be taken on the Montu, Kumba, Phoenix, Gwazi, or SheiKra.
- Except for the height measurement on the Scorpion, which requires a Horizontal Force Meter, the Advanced sections require only the use of a stopwatch.
- On Physics Days there also will be G-Force Meters mounted on the Montu, Kumba, Phoenix, and Gwazi.