GIANCOLI HOMEWORK SOLUTIONS

Section 5-6 to 5-7, \#28-41
28. GIVEN
$h=12,800 \mathrm{~km}=1.28 \times 10^{7} \mathrm{~m}$
$m=1350 \mathrm{~kg}$

KNOWN

Since the gravitational force is based on the distance from the center of the attracting body, we must add the height above the surface to the planet's radius to come up with a value of r for the equations

SOLUTION

$r_{\text {earth }}=6.38 \times 10^{3} \mathrm{~km}=6.38 \times 10^{6} \mathrm{~m}$, inside front cover
$r=r_{\text {earth }}+h=6.38 \times 10^{6} \mathrm{~m}+1.28 \times 10^{7} \mathrm{~m}=1.918 \times 10^{7} \mathrm{~m}$
$M_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$, inside front cover
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover
$F_{g}=G \frac{M m}{r^{2}}$
$F_{g}=\left(6.67 \times 10^{-11} \frac{\mathrm{Nm}^{z}}{\mathrm{~kg}^{2}}\right) \frac{\left(5.98 \times 10^{24} \mathrm{~kg}\right)(1350 \mathrm{~kg})}{\left(1.918 \times 10^{7} \mathrm{~m}\right)^{2}}=1464 \mathrm{~N} \quad$ notice how the units cancel out

29. GIVEN

$g=12.0 \mathrm{~m} / \mathrm{s}^{2}$
$m=21.0 \mathrm{~kg}$
KNOWN
Mass is the same everywhere regardless of the gravitational force, but weight (mg) IS dependent on the gravitational attraction

SOLUTION

a. mass is the same, 21.0 kg , on both the planet and on earth
b. Earth: $F_{g}=m g=(9.81)(21.0)=206 N$

Planet: $F_{g}=m g=(12.0)(21.0)=252 N$
30. GIVEN
$r=1.74 \times 10^{6} \mathrm{~m}$
$M=7.35 \times 10^{22} \mathrm{~kg}$
SOLUTION
$F_{g}=m g=G \frac{M m}{r^{2}}$
$g=G \frac{M}{r^{2}}=\left(6.67 \times 10^{-11}\right) \frac{\left(7.35 \times 10^{22}\right)}{\left(1.74 \times 10^{6}\right)^{2}}=1.62 \mathrm{~m} / \mathrm{s}^{2}$
31. GIVEN
$r_{\text {planet }}=1.5 r_{\text {earth }}=(1.5) 6.38 \times 10^{6}=m$
$M_{\text {planet }}=M_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$
KNOWN
$F_{g}=m g=G \frac{M m}{r^{2}}$
$g=G \frac{M}{r^{2}}$
SOLUTION
$g=G \frac{M}{r^{2}}$
$\frac{g}{(1.5)^{2}}=G \frac{M}{[(1.5)(r)]^{2}}=\frac{9.81}{(1.5)^{2}}=4.36 \mathrm{~m} / \mathrm{s}^{2}$

32. GIVEN

$r_{\text {planet }}=r_{\text {earth }}=(1.5) 6.38 \times 10^{6}=m$
$M_{\text {planet }}=(1.66) M_{\text {earth }}=(1.66) 5.98 \times 10^{24}=99,268 \mathrm{~kg}$
KNOWN
$F_{g}=m g=G \frac{M m}{r^{2}}$
$g=G \frac{M}{r^{2}}$
SOLUTION
$g=G \frac{M}{r^{2}}$
$(1.66) g=G \frac{(1.66) M}{r^{2}}=(1.66)(9.81)=16.3 \mathrm{~m} / \mathrm{s}^{2}$
33. GIVEN
$F_{g}=2.5 \times 10^{-10} N$ when $r=0.25 m$
$m_{1}+m_{2}=4 \mathrm{~kg}$
$m_{1}=4 k g-m_{2}$
SOLUTION
$F_{g}=G \frac{m_{1} m_{2}}{r^{2}}$
$F_{g}=G \frac{\left(4-m_{2}\right) m_{2}}{r^{2}}$
$\frac{F_{g} r^{2}}{G}=4 m_{2}-m_{2}{ }^{2}$
$m_{2}^{2}-4 m_{2}+\frac{\left(2.5 \times 10^{-10}\right)(0.25)^{2}}{\left(6.67 \times 10^{-11}\right)}=0$
$m_{2}{ }^{2}-4 m_{2}+0.234=0$
$m_{2}=\frac{-(b) \pm \sqrt{b^{2}-4 a c}}{2 a}$
$m_{2}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(0.234)}}{2(1)}=3.94,0.0594$
$m_{1}=4-3.94=0.06$
$m_{1}=4-0.0594=3.94$

34. GIVEN

Nada

KNOWN

$r=r_{\text {earth }}+h$
$r_{\text {earth }}=6.38 \times 10^{3} \mathrm{~km}=6.38 \times 10^{6} \mathrm{~m}$, inside front cover
$M_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$, inside front cover
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover

SOLUTION

a. @ $h=3200 m$

$$
\begin{aligned}
& r=r_{e a r t h}+h=6.38 \times 10^{6} \mathrm{~m}+3200 \mathrm{~m}=6.3832 \times 10^{6} \mathrm{~m} \\
& g=G \frac{M}{r^{2}} \\
& g=\left(6.67 \times 10^{-11}\right) \frac{\left(5.98 \times 10^{24}\right)}{\left(6.3832 \times 10^{6}\right)^{2}}=9.78 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b. @ $h=3200 \mathrm{~km}=3.20 \times 10^{6} \mathrm{~m}$

$$
r=r_{e a r t h}+h=6.38 \times 10^{6} \mathrm{~m}+3.20 \times 10^{6} \mathrm{~m}=9.58 \times 10^{6} \mathrm{~m}
$$

$$
\begin{aligned}
& g=G \frac{M}{r^{2}} \\
& g=\left(6.67 \times 10^{-11}\right) \frac{\left(5.98 \times 10^{24}\right)}{\left(9.58 \times 10^{6}\right)^{2}}=4.35 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

35. GIVEN
$g_{r}=(0.1) g$
KNOWN
$g_{\text {surface }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$M_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$, inside front cover
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover

SOLUTION

(0.1) $g=G \frac{M}{r^{2}}$
$r^{2}=\frac{G M}{(0.1) g}$
$r=\sqrt{\frac{G M}{(0.1) g}}=\sqrt{\frac{\left(6.67 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)}{(0.1)(9.81)}}=2.02 \times 10^{7} \mathrm{~m}$
36. GIVEN
$m_{\text {star }}=5 M_{\text {sun }}=5\left(1.99 \times 10^{30}\right)=9.95 \times 10^{30} \mathrm{~kg}$, inside front cover
$r=10,000 m$

KNOWN

$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover

SOLUTION

$g=G \frac{M}{r^{2}}$
$g=\left(6.67 \times 10^{-11}\right) \frac{\left(9.95 \times 10^{30}\right)}{(10,000)^{2}}=6.63 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$
37. GIVEN
$m_{\text {star }}=M_{\text {sun }}=1.99 \times 10^{30} \mathrm{~kg}$, inside front cover
$r_{\text {star }}=r_{\text {moon }}=1.74 \times 10^{3} \mathrm{~km}=1.74 \times 10^{6} \mathrm{~m}$, inside front cover
KNOWN
When they say "same size" we assume same radius and that it is a sphere

SOLUTION

$$
\begin{aligned}
& g=G \frac{M}{r^{2}} \\
& g=\left(6.67 \times 10^{-11}\right) \frac{\left(1.99 \times 10^{30}\right)}{\left(1.74 \times 10^{6}\right)^{2}}=4.38 \times 10^{7} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

38. GIVEN

$h=250 \mathrm{~km}=2.50 \times 10^{5} \mathrm{~m}$

KNOWN

Since the gravitational force is based on the distance from the center of the attracting body, we must add the height above the surface to the planet's radius to come up with a value of r for the equations

SOLUTION

$r_{\text {earth }}=6.38 \times 10^{3} \mathrm{~km}=6.38 \times 10^{6} \mathrm{~m}$, inside front cover
$r=r_{\text {earth }}+h=6.38 \times 10^{6} \mathrm{~m}+2.50 \times 10^{5} \mathrm{~m}=6.63 \times 10^{6} \mathrm{~m}$
$M_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$, inside front cover
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover
$g_{\text {surface }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

SOLUTION

$g=G \frac{M}{r^{2}}$
$g=\left(6.67 \times 10^{-11}\right) \frac{\left(5.98 \times 10^{24}\right)}{\left(6.63 \times 10^{6}\right)^{2}}=9.07 \mathrm{~m} / \mathrm{s}^{2}\left(\frac{1 \mathrm{~g}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}\right)=0.925 \mathrm{~g}^{\prime} \mathrm{s}$
39. NOTE: You will see problems of this type several times throughout your physics classes so it is highly advantageous to learn how to do them now!

GIVEN

$s=0.60 m$
$m=9.5 \mathrm{~kg}$

KNOWN

$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover
$x=\sqrt{s^{2}+s^{2}}=\sqrt{2 s^{2}}=s \sqrt{2}$

SOLUTION

$F_{g}=G \frac{m m}{r^{2}}$
$F_{X-A}=F_{X-C}=\left(6.67 \times 10^{-11}\right) \frac{(9.5)(9.5)}{(0.6)^{2}}=1.67 \times 10^{-8} \mathrm{~N}$

$$
\begin{aligned}
& F_{X-B}=\left(6.67 \times 10^{-11}\right) \frac{(9.5)(9.5)}{(0.6 \sqrt{2})^{2}}=8.36 \times 10^{-9} N \\
& \quad F_{X-B_{X}}=F_{X-B_{y}}=F_{X-B} \cos 45=8.36 \times 10^{-9} \cos 45=5.91 \times 10^{-9} \\
& R_{x}=F_{X-A}+F_{X-B} \cos 45=1.67 \times 10^{-8}+5.91 \times 10^{-9}=2.261 \times 10^{-8} \\
& R_{y}=F_{X-C}+F_{X-B} \cos 45=1.67 \times 10^{-8}+5.91 \times 10^{-9}=2.261 \times 10^{-8} \\
& x=\sqrt{s^{2}+s^{2}}=\sqrt{2 s^{2}}=s \sqrt{2} \\
& R=R_{x / y} \sqrt{2}=\left(2.261 \times 10^{-8}\right) \sqrt{2}=3.20 \times 10^{-8} N
\end{aligned}
$$

Since the components are the same, the resultant will be at a 45° angle, which is along the line joining X and B.

40. GIVEN

$$
\begin{array}{ll}
M_{V}=0.815 M_{E} & r_{V \rightarrow \text { Sun }}=108 \times 10^{6} \mathrm{~km}=108 \times 10^{9} \mathrm{~m} \\
M_{E}=5.98 \times 10^{24} \mathrm{~kg} & r_{E \rightarrow \text { Sun }}=150 \times 10^{6} \mathrm{~km}=150 \times 10^{9} \mathrm{~m} \\
M_{J}=318 M_{E} & r_{J \rightarrow \text { Sun }}=778 \times 10^{6} \mathrm{~km}=778 \times 10^{9} \mathrm{~m} \\
M_{S}=95.1 M_{E} & r_{S \rightarrow \text { Sun }}=1430 \times 10^{6} \mathrm{~km}=1430 \times 10^{9} \mathrm{~m} \\
M_{\text {Sun }}=1.99 \times 10^{30} \mathrm{~kg} & r_{E \rightarrow \text { Sun }}=150 \times 10^{6} \mathrm{~km}=150 \times 10^{9} \mathrm{~m}
\end{array}
$$

KNOWN

- You need to find the net force on Earth which we know will be to the right because there are two big planets to the right and a small Venus to the left. But you have to remember to subtract the force of Venus from the other two.
- To find the distance from Earth, take each planet's distance from the Sun and subtract it from the Earth's distance from the Sun.

SOLUTION

a. Net force on the Earth

$$
\begin{aligned}
& \sum F_{g}=-F_{g-V}+F_{g-J}+F_{g-S} \\
& F_{g}=G \frac{\mathrm{~mm}}{r^{2}} \\
& r_{E \rightarrow \text { Venus }}=108 \times 10^{9}-150 \times 10^{9} \mathrm{~m}=-42 \times 10^{9} \\
& r_{E \rightarrow \text { Jupiter }}=778 \times 10^{9}-150 \times 10^{9} \mathrm{~m}=628 \times 10^{9} \\
& r_{E \rightarrow \text { Saturn }}=1430 \times 10^{9}-150 \times 10^{9} \mathrm{~m}=1280 \times 10^{9} \\
& F_{g-V}=\left(6.67 \times 10^{-11}\right) \frac{(0.815)\left(5.98 \times 10^{24} \mathrm{~kg}\right)^{2}}{\left(42 \times 10^{9}\right)^{2}}=1.10 \times 10^{18} \\
& F_{g-J}=\left(6.67 \times 10^{-11}\right) \frac{(318)\left(5.98 \times 10^{24} \mathrm{~kg}\right)^{2}}{\left(778 \times 10^{9}\right)^{2}}=1.92 \times 10^{18}
\end{aligned}
$$

$$
\begin{aligned}
& F_{g-S}=\left(6.67 \times 10^{-11}\right) \frac{(95.1)\left(5.98 \times 10^{24} \mathrm{~kg}\right)^{2}}{\left(1430 \times 10^{9}\right)^{2}}=1.38 \times 10^{17} \\
& \sum F_{g}=-F_{g-V}+F_{g-J}+F_{g-S}=-1.10 \times 10^{18}+1.92 \times 10^{18}+1.38 \times 10^{17}=9.58 \times 10^{17} \mathrm{~N}
\end{aligned}
$$

b. Fraction of the Sun's force on the Earth

$$
\begin{aligned}
& F_{E-\text { Sun }}=\left(6.67 \times 10^{-11}\right) \frac{\left(1.99 \times 10^{30}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{\left(150 \times 10^{9}\right)^{2}}=3.53 \times 10^{22} \mathrm{~N} \\
& \frac{F_{E-\text { Planets }}}{F_{E-\text { Sun }}}=\frac{9.58 \times 10^{17}}{3.53 \times 10^{22}}=2.71 \times 10^{-5}
\end{aligned}
$$

41. GIVEN
$g_{\text {Mars }}=0.38 g_{\text {Earth }}$
$r=3400 \mathrm{~km}=3.4 \times 10^{6} \mathrm{~m}$

KNOWN

$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$, inside front cover
$g_{\text {Earth }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
SOLUTION
$g=G \frac{M}{r^{2}}$
$\frac{0.38 g_{\text {Earth }} r^{2}}{G}=M=\frac{(0.38)(9.81)\left(3.4 \times 10^{6}\right)^{2}}{6.67 \times 10^{-11}}=6.46 \times 10^{23} \mathrm{~kg}$

