GIANCOLI HOMEWORK SOLUTIONS

Section 8-7, \#43-48
43. GIVEN
$I=3.75 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
8250 rpm
KNOWN
$K E=\frac{1}{2} I \omega^{2}$
SOLUTION
$\omega=\frac{8250 \mathrm{rev}}{\min } x \frac{2 \pi \mathrm{rad}}{\mathrm{rev}} x \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=864 \mathrm{rad} / \mathrm{s}$
$K E=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(3.75 \times 10^{-2}\right)(864)^{2}=1.40 \times 10^{4} J$
44. GIVEN
$\tau=280 \mathrm{~m} \cdot \mathrm{~N}$
3800 rpm
KNOWN
$P=\frac{W}{\Delta t}=\frac{\tau \Delta \theta}{\Delta t}=\tau \frac{\Delta \theta}{\Delta t}=\tau \omega$

SOLUTION

$\omega=\frac{3800 \mathrm{rev}}{\min } x \frac{2 \pi \mathrm{rad}}{\mathrm{rev}} x \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=398 \mathrm{rad} / \mathrm{s}$
$P=\tau \omega=(280)(398)=1.11 \times 10^{5} W x \frac{1 h p}{746 W}=149 h p$
45. GIVEN
$m=7.3 \mathrm{~kg}$
$r=9.0 \mathrm{~cm}=0.09 \mathrm{~m}$
$v=3.3 \mathrm{~m} / \mathrm{s}$
rolls without slipping
KNOWN
$K E=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$
$v=r \omega$
$\frac{v}{r}=\omega$
$I_{\text {sphere }}=\frac{2}{5} m r^{2}$

SOLUTION

$K E=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$
$K E=\frac{1}{2}\left(\frac{2}{5} m r^{2}\right)\left(\frac{v}{r}\right)^{2}+\frac{1}{2} m v^{2}$
$K E=\frac{1}{z}\left(\frac{z}{5}(7.3)(0.09)^{z}\right)\left(\frac{(3.3)}{(0.09)}\right)^{2}+\frac{1}{2}(7.3)(3.3)^{2}=55.6 J$
46. GIVEN
$m_{\text {earth }}=6.0 \times 10^{24} \mathrm{~kg}$
$r_{\text {earth }}=6.4 \times 10^{6} \mathrm{~m}$
$R_{\text {earth-sun }}=1.5 \times 10^{8} \mathrm{~km}=1.5 \times 10^{11} \mathrm{~m}$

KNOWN

$K E=\frac{1}{2} I \omega^{2}$
$I_{\text {sphere }}=\frac{2}{5} m r^{2}$
$I_{\text {particle }}=m r^{2}$

SOLUTION

a. $K E=\frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \omega^{2}$

$$
\begin{aligned}
& \omega_{\text {day }}=\frac{2 \pi \mathrm{rad}}{24 \mathrm{~h}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=7.27 \times 10^{-5} \mathrm{rad} / \mathrm{s} \\
& K E=\frac{1}{z}\left(\frac{z}{5}\left(6.0 \times 10^{24}\right)\left(6.4 \times 10^{6}\right)^{2}\right)\left(7.27 \times 10^{-5}\right)^{2}=2.60 \times 10^{29} \mathrm{~J}
\end{aligned}
$$

b. $K E=\frac{1}{2}\left(\frac{1}{2} m r^{2}\right) \omega^{2}$

$$
\begin{aligned}
& \omega_{\text {year }}=\frac{2 \pi r a d}{y e a r} x \frac{1 \text { year }}{365 \text { days }} \times \frac{1 \text { day }}{24 \mathrm{~h}} \times \frac{1 \mathrm{~h}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=1.99 \times 10^{-7} \mathrm{rad} / \mathrm{s} \\
& K E=\frac{1}{2}\left(\left(6.0 \times 10^{24}\right)\left(1.5 \times 10^{11}\right)^{2}\right)\left(1.99 \times 10^{-7}\right)^{2}=2.67 \times 10^{33} \mathrm{~J}
\end{aligned}
$$

Yearly + Daily $=2.67 \times 10^{33}+2.60 \times 10^{29}=2.67 \times 10^{33} \mathrm{~J}$
47. GIVEN
$m=1640 \mathrm{~kg}$
$r=7.5 m$
1 rev in 8.0 s
solid cylinder
KNOWN
$W=\Delta K E$
$\Delta K E=\frac{1}{2} I \omega^{2}-0$
$I_{\text {cylinder }}=\frac{1}{2} m r^{2}$
SOLUTION
$\omega=\frac{1 \mathrm{rev}}{8.00 \mathrm{~s}} x \frac{2 \pi \mathrm{rad}}{\mathrm{rev}}=0.785 \mathrm{rad} / \mathrm{s}$
$K E=\frac{1}{2}\left(\frac{1}{2}(1640)(7.5)^{2}\right)(0.785)^{2}=1.42 \times 10^{4} J$
48. GIVEN
$m=1.8 \mathrm{~kg}$
$r=20.0 \mathrm{~cm}=0.20 \mathrm{~m}$
$\theta=30^{\circ}$
$l=10 m$
rolls without slipping
KNOWN
$P E=K E=\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}$
$P E=m g h$
$h=l \sin 30^{\circ}=5.0 m$
$v=r \omega$
$\frac{v}{r}=\omega$
$I_{\text {sphere }}=\frac{2}{5} m r^{2}$

SOLUTION

a. $m g h=\frac{1}{z}\left(\frac{z}{5} m r^{z}\right)\left(\frac{v}{r}\right)^{2}+\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& g h=\left(\frac{1}{5}\right)(v)^{2}+\frac{1}{2} v^{2}=\frac{7}{10} v^{2} \\
& \sqrt{\frac{10 g h}{7}}=v=\sqrt{\frac{10(9.81)(5)}{7}}=8.37 \mathrm{~m} / \mathrm{s} \\
& \frac{v}{r}=\omega=\frac{8.37}{0.20}=41.9 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

b. $\frac{\frac{1}{z} m v^{z}}{\frac{1}{z}\left(\frac{2}{5} m r^{z}\right)\left(\frac{y}{x}\right)^{2}}=\frac{1}{\left(\frac{2}{5}\right)}=\frac{5}{2}=2.5$
c. None of the answers are dependent on mass, only angular velocity depends on radius

