

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS

AP PHYSICS

Introductory Video

GIANCOLI LESSON 1-5 TO 1-6 UNITS, STANDARDS AND THE SI SYSTEM CONVERTING UNITS

Reading Activity Questions?

- Reading Activity 1-5 to 1-6
- Cornell Notes
 - unit
 - length/meter
 - time/second
 - mass/kilogram
 - Système International (SI)
 - cgs system
 - British engineering system
 - conversion factor

Objectives

- MA.912.S.1.2: Determine appropriate and consistent standards of measurement for the data to be collected in a survey or experiment.
- State the meaning of "unit" and "standard" and the difference between the two.

Objectives

- State the primary SI units.
- Use conversion factors to convert units.

- <u>Units</u>. Units are specifications for a measurement based on a standard.
- <u>Standard</u>. A standard is a defined value for a unit based upon some measurement.

- Examples: "Meter" is a unit of length. The standard for a meter has, at various times, been:
 - Distance from the tip of your nose to the tip of your longest finger when arm is extended horizontally. Problem?
 - One ten-millionth of the distance from the earth's equator to either pole. Problem?
 - Distance between two finely engraved marks on a particular bar of a platinum-iridium alloy. Problem?

- Examples: "Meter" is a unit of length. The standard for a meter has, at various times, been:
 - For greater precision and reproducibility, changed in 1960 to 1,650,763.73 wavelengths of an orange light emitted by krypton 86 gas. Problem?
 - Current: length of path traveled by light in 1/299,792,458th's of a second. Problem?
 - How precise does it have to be?

Examples:

- The standard for one inch is 2.54 cm.
- For the standard for cm, see meter above and divide by 100

Système International (SI)

- System of units and standards most commonly used in science
- Commonly known as the metric system
- Base units:
 - Length meter (m)
 - Mass kilogram (kg)
 - Time second (s)
- Old name was MKS system (meter, kilogram, second)

Système International (SI)

- Secondary metric system: CGS System
- Base units:
 - Length centimeter (cm)
 - Mass gram (g)
 - Time second (s)
- More useful for small stuff

British Engineering System

Base units:

- Length foot (ft)
- Force pound (lb)
- Time second (s)
- Most engineering drawings are still in inches with tolerances measured in 1000ths of an inch

Units of Units

- Force \Rightarrow Newton (N) $\Rightarrow 1 \text{kg} \cdot \text{m/s}^2$
- Energy and Work \Rightarrow Joule (J) $\Rightarrow 1 kg \cdot m^2/s^2$
- Pressure \Rightarrow Pascal (Pa) $\Rightarrow 1kg/m \cdot s^2$

Using Units

- Units are mucho importante to problem solvingi!
 - FIRST ensure the units for your inputs are compatible for any constants you are given
 - SECOND ensure all units are the same for the same type of measurement
 - THIRD make sure your units cancel into the correct units for your answer (see below)

How do you add fractions?

$$\frac{1}{2} + \frac{1}{3} = ?$$

How do you add fractions?

$$\left(\frac{1}{2}\right) + \left(\frac{1}{3}\right) = ?$$

$$\left(\frac{1}{2}\right) \left(\frac{3}{3}\right) + \left(\frac{1}{3}\right) \left(\frac{2}{2}\right) = ?$$

$$\left(\frac{3}{6}\right) + \left(\frac{2}{6}\right) = \left(\frac{5}{6}\right)$$

- Multiply by a conversion factor to get a common denominator
- Conversion factors always equal to 1
- Identity Property

Unit conversion is the same – multiplying by 1 to change the *form* of a number

How do you multiply fractions?

$$\left(\frac{2}{5}\right)x\left(\frac{3}{2}\right)x\left(\frac{5}{7}\right) = ?$$

How do you multiply fractions?

- Common factors cancel out
- Then multiply

 Units cancel out in the same way fractions do

 $\frac{1\min}{60\sec} = \frac{60\sec}{1\min} = 1$

How do you convert 10 inches per second to meters per minute?

$$\left(\frac{10in}{1s}\right) x \left(\frac{1m}{39.37in}\right) x \left(\frac{60s}{1\min}\right) = \frac{10x60}{39.37} \frac{m}{\min}$$

- 15.24 = 15 m/mm
- Multiply by conversion factors
- Conversion factors equal to 1 (Identity Property)
- Cancel out common units
- Then multiply

- Conversion factors do not count as significant figures if it is a defined conversion
 - 1 in = 2.54 cm (not significant figure)
 - I mi = 1.61 km (significant figure because 1.61 is not an exact or defined amount [1.609344 is exact)
- Look at the conversion factors on the inside front cover of your book

Sample problem: If I drive 60 mph, how fast is that in mm/sec?

- Sample problem: If I drive 60 mph, how fast is that in mm/sec?
 - (60 mi/hr) x (1hr/60min) x (1min/60sec) x (5280ft/1mi) x (12in/1ft) x (2.54cm/1in) x (10mm/cm) = _____

- Sample problem: If I drive 60 mph, how fast is that in mm/sec?
 - (60 mi/hr) x (1hr/60min) x (1min/60sec) x (5280ft/1mi) x (12in/1ft) x (2.54cm/1in) x (10mm/cm) = _____

- Sample problem: If I drive 60 mph, how fast is that in mm/sec?
 - (60) X (1/60) X (1/60Sec) X (885280/1) X (12/1) X
 (2.54/1) X (10mm/1) = 26822.4 = 2.6X10⁴ mm/sec

Sig Figs and <u>Scientific</u> Notation

Sig Figs and Scientific Notation

- In order to write really large numbers and really small numbers and still comply with the rules for significant figures, you have to use scientific notation
- As a general rule for <u>my class</u>, you should never have an answer longer than three digits (but four isn't too bad)
- In problem solving, *round your final answer* only to significant figures

- Move decimal so there is only one number to the left of the decimal
- Number of decimal place moves equals the power of ten

 $6200000 = 6.2\times10^{6}$ $0.00725 = 7.25\times10^{-3}$ $9.85\times10^{5} = 985000$ $1.20\times10^{-3} = 0.00120$

- Multiplying numbers in scientific notation
 - Multiply the base numbers
 - Add the powers of ten
 - Move the decimal as required (and increase the power of ten) so you only have one digit to the left of the decimal

 $2 \times 10^{3} \times 4 \times 10^{4} = 8 \times 10^{7}$ $4 \times 10^{5} \times 3 \times 10^{-3} = 12 \times 10^{2} = 1.2 \times 10^{3}$ $6 \times 10^{-7} \times 3 \times 10^{-2} = 18 \times 10^{-9} = 1.8 \times 10^{-8}$

- Multiplying numbers in scientific notation
 - Multiply the base numbers
 - Add the powers of ten
 - Move the decimal as required (and increase the power of ten) so you only have one digit to the left of the decimal
 Check Using

Scientific Notation

 $2 \times 10^{3} \times 4 \times 10^{4} = 8 \times 10^{7}$ on Calculators $4 \times 10^{5} \times 3 \times 10^{-3} = 12 \times 10^{2} = 1.2 \times 10^{3}$ $6 \times 10^{-7} \times 3 \times 10^{-2} = 18 \times 10^{-9} = 1.8 \times 10^{-8}$

- Dividing numbers in scientific notation
 - Divide the base numbers
 - Subtract the powers of ten
 - Move the decimal (and decrease the power of ten) so you only have one digit to the left of the decimal

 $8 \times 10^{6} \div 2 \times 10^{4} = 4 \times 10^{2}$ $1 \times 10^{-8} \div 9 \times 10^{4} = 0.111 \times 10^{-12} = 1.11 \times 10^{-13}$ $4 \times 10^{5} \div 3 \times 10^{-3} = 0.75 \times 10^{8} = 7.5 \times 10^{7}$ $6 \times 10^{-7} \div 5 \times 10^{-2} = 1.2 \times 10^{-5}$

- Adding and subtracting numbers in scientific notation
 - Convert numbers to decimal numbers
 - Add or subtract
 - Convert back to scientific notation
 - Or just use a calculator

 $8 \times 10^{6} + 2 \times 10^{4} = 800000 + 20000 = 8020000$ = 8.02×10^{6}

 $6 \times 10^{-3} - 5 \times 10^{-2} = 0.006 - 0.05 = -0.044$ = -4.4×10⁻²

- Speaking of calculators . . .
 - Everyone take out their calculators
 - Make sure you can switch your display from decimal to scientific notation and back again
 - Perform the following operation using the scientific notation functions of your calculator:

 $6.39 \times 10^7 \div 8.72 \times 10^{-5} = 7.33 \times 10^{11}$

GET YOUR CALCULATOR ENGRAVED!!!

General Operating Procedure

- Perform all operations on your calculator without rounding if possible
- Round your final answer to the correct number of significant figures using scientific notation if needed
- If using intermittent rounding, never round to less than the correct number of sig figs
- On tests, I use ±5% tolerance for intermittent rounding differences

Metrics With Prefixes

- Prefixes are added to units to stand for a power of ten
- 1cm is a centimeter and centi is a prefix for 10⁻² thus 1cm = 1x10⁻² m or 0.01m
- Note the chart on the inside front cover of your books

= 14.7 lb/in.² = 760 torr lb/in.² = 6.90×10^3 N/m² Pa = 1 N/m² = 1.45×10^{-4} lb/in.²

ferms of e Units [†]	Metric (SI) Multipliers				
	Prefix	Abbreviation	Value		
	exa	E	10 ¹⁸		
m/s^2	peta	Р	10^{15}		
m^2/s^2	tera	Т	10^{12}		
m^{2}/s^{3}	giga	G	10^{9}		
$(m \cdot s^2)$	mega	М	10^{6}		
(11.5.)	kilo	k	10^{3}		
	hecto	h	10^{2}		
$m^2/(A \cdot s^3)$	deka	da	10^{1}		
$m^2/(A^2 \cdot s^3)$	deci	d	10^{-1}		
$s^4/(kg \cdot m^2)$	centi	с	10^{-2}		
$(A \cdot s^2)$	milli	m	10^{-3}		
$m^2/(A \cdot s^2)$	micro	μ	10^{-6}		
$m^2/(s^2 \cdot A^2)$	nano	n	a 10 ⁻⁹		
	pico	р	9 10 ⁻¹²		
ctric current).	femto	f	10^{-12}		
	atto	a	10^{-18}		

Metrics With Prefixes

 I want to sell you a memory stick with a 3,000 hB capacity for \$3. Is that a good deal? = 14.7 lb/in.² = 760 torr lb/in.² = 6.90×10^3 N/m² Pa = 1 N/m² = 1.45×10^{-4} lb/in.²

Fer

m/

m²/ m²/ (m

m² m²

 m^2 m^2

ectri

ms of Jnits [†]	Metric	Metric (SI) Multipliers			
	Prefix	Abbreviation	Value		
	exa	Е	10^{18}		
s ²	peta	Р	10^{15}		
$/s^2$	tera	Т	1012		
(s^3)	giga	G	10^{9}		
$\cdot s^2$)	mega	М	10^{6}		
3)	kilo	k	10^{3}		
	hecto	h	10^{2}		
$/(A \cdot s^3)$	deka	da	10^{1}		
$(A^2 \cdot s^3)$	deci	d	10^{-1}		
$(kg \cdot m^2)$	centi	с	10^{-2}		
(s^2)	milli	· m	10^{-3}		
$(A \cdot s^2)$	micro	μ	10^{-6}		
$/(s^2 \cdot A^2)$	nano	n	a 10 ⁻⁹		
(0 11)	pico	р	9 10 ⁻¹³		
c current).	femto	f	10^{-13}		
	atto	а	10^{-10}		

Metrics With Prefixes

- I want to sell you a memory stick with a 3,000 hB capacity for \$3. Is that a good deal?
- Not hardly. 3,000 hB is equal to 300,000 B which is 300 kB.

 $= 14.7 \text{ lb/in.}^2 = 760 \text{ torr}$ $1b/in.^2 = 6.90 \times 10^3 N/m^2$ $Pa = 1 N/m^2 = 1.45 \times 10^{-4} lb/in.^2$

Terms of	Metric (SI) Multipliers			
	Prefix	Abbreviation	Value	
se Units [†]	exa	E	10^{18}	
m/s^2	peta	Р	10^{15}	
m^2/s^2	tera	Т	10^{12}	
m^2/s^3	giga	G	10^{9}	
$(m \cdot s^2)$	mega	М	10^{6}	
(m o)	kilo	k	10^{3}	
S	hecto	h	10^{2}	
$m^2/(A \cdot s^3)$	deka	da	10^{1}	
$m^2/(A^2 \cdot s^3)$	deci	d	10^{-1}	
$s^4/(kg \cdot m^2)$	centi	с	10^{-2}	
$(A \cdot s^2)$	milli	m	10^{-3}	
$m^2/(A \cdot s^2)$	micro	μ	10^{-6}	
$m^2/(s^2 \cdot A^2)$	nano	n	a 10 ⁻⁹	
	pico	р	9 10 ⁻¹³	
ectric current).	femto	ŕ	10^{-13}	
	atto	а	10^{-13}	

Summary Review

- MA.912.S.1.2: Can you determine appropriate and consistent standards of measurement for the data to be collected in a survey or experiment?
- Can you state the meaning of "unit" and "standard" and the difference between the two?

Summary Review

Can you state the primary SI units?
Can you use conversion factors to convert units?

QUESTIONS?

Homework

#12-22

STOPPER HERE ON 2/4