

DEVIL PHYSICS

THE BADDEST CLASS ON CAMPUS
APPHYSICS

Introductory Video

GIANCOLI LESSON 1-5 TO 1-6 UNITS, STANDARDS AND THE SI SYSTEM CONVERTING UNITS

Reading Activity Questions?

- Reading Activity 1-5 to 1-6
- Cornell Notes
- unit
- length/meter
- time/second
- mass/kilogram
- Système International (SI)
- cgs system
- British engineering system conversion factor

Objectives

- MA.912.S.1.2: Determine appropriate and consistent standards of measurement for the data to be collected in a survey or experiment.
- State the meaning of "unit" and "standard" and the difference between the two.

Objectives

- State the primary SI units.
- Use conversion factors to convert units.

Units and Standards

- Units. Units are specifications for a measurement based on a standard.
- Standard. A standard is a defined value for a unit based upon some measurement.

Units and Standards

- Examples: "Meter" is a unit of length. The standard for a meter has, at various times, been:
- Distance from the tip of your nose to the tip of your longest finger when arm is extended horizontally. Problem?
- One ten-millionth of the distance from the earth's equator to either pole. Problem?
- Distance between two finely engraved marks on a particular bar of a platinum-iridium alloy. Problem?

Units and Standards

- Examples: "Meter" is a unit of length. The standard for a meter has, at various times, been:
- For greater precision and reproducibility, changed in 1960 to 1,650,763.73 wavelengths of an orange light emitted by krypton 86 gas. Problem?
- Current: length of path traveled by light in 1/299,792,458th's of a second. Problem?
- How precise does it have to be?

Units and Standards

- Examples:
- The standard for one inch is $\mathbf{2 . 5 4} \mathbf{~ c m}$.
- For the standard for cm , see meter above and divide by 100

Système International (SI)

- System of units and standards most commonly used in science
- Commonly known as the metric system
- Base units:
- Length - meter (m)
- Mass - kilogram (kg)
- Time - second (s)
- Old name was MKS system (meter, kilogram, second)

Système International (SI)

- Secondary metric system: CGS System
- Base units:
- Length - centimeter (cm)
- Mass - gram (g)
- Time - second (s)
- More useful for small stuff

British Engineering System

- Base units:
- Length - foot (ft)
- Force - pound (lb)
- Time - second (s)
- Most engineering drawings are still in inches with tolerances measured in 1000ths of an inch

Units of Units

- Force \Rightarrow Newton $(N) \Rightarrow 1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{\mathbf{2}}$
- Energy and Work \Rightarrow Joule $(J) \Rightarrow 1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$
- Pressure \Rightarrow Pascal $(\mathrm{Pa}) \Rightarrow 1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}$

PLEASE
DON'T THROW
YOUR CIGARETTE ENDS
ON THE FLOOR
THE COCKROACHES
ARE GETTING CANCER

Using Units

- Units are mucho importante to problem solving;!
- FIRST - ensure the units for your inputs are compatible for any constants you are given
- SECOND - ensure all units are the same for the same type of measurement
- THIRD - make sure your units cancel into the correct units for your answer (see below)

Unit Conversions

- How do you add fractions?

Unit Conversions

- How do you add fractions?

$$
\begin{aligned}
& \left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)=? \\
& \left(\frac{1}{2}\right)\left(\frac{3}{3}\right)+\left(\frac{1}{3}\right)\left(\frac{2}{2}\right)=? \\
& \left(\frac{3}{6}\right)+\left(\frac{2}{6}\right)=\left(\frac{5}{6}\right)
\end{aligned}
$$

- Multiply by a conversion factor to get a common denominator
- Conversion factors always equal to 1
- Identity Property
- Unit conversion is the

Unit Conversions

- How do you multiply fractions?

$$
\left(\frac{2}{5}\right) x\left(\frac{3}{2}\right) x\left(\frac{5}{7}\right)=?
$$

Unit Conversions

- How do you multiply fractions?

- Common factors cancel out
- Then multiply
- Units cancel out in the same way fractions do

Unit Conversions

$1 \mathrm{~min}=60 \mathrm{sec}$
 $1 \mathrm{~min} \quad 60 \mathrm{sec}$
 $=1$

Unit Conversions

- How do you convert 10 inches per second to meters per minute?

$$
\begin{aligned}
& \left(\frac{10 \text { in }}{\mathrm{x}}\right) \times\left(\frac{1 \mathrm{~m}}{39.37 \mathrm{in}}\right) \times\left(\frac{60 \mathrm{x}}{1 \mathrm{~min}}\right)=\frac{10 \times 60}{39.37} \frac{\mathrm{~m}}{\mathrm{~min}} \\
& 15.24=15 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

- Multiply by conversion factors
- Conversion factors equal to 1 (Identity Property)

Unit Conversions

- Conversion factors do not count as significant figures if it is a defined conversion
- 1 in = 2.54 cm (not significant figure)
- $1 \mathrm{mi}=1.61 \mathrm{~km}$ (significant figure because 1.61 is not an exact or defined amount [1.609344 is exact)
- Look at the conversion factors on the inside front cover of your book

Unit Conversions

- Sample problem: If I drive 60 mph , how fast is that in $\mathrm{mm} / \mathrm{sec}$?

Unit Conversions

- Sample problem: If I drive 60 mph , how fast is that in $\mathrm{mm} / \mathrm{sec}$?
- $(60 \mathrm{mi} / \mathrm{hr}) \times(1 \mathrm{hr} / 6 \mathrm{~min}) \times(1 \mathrm{~min} / 6 \mathrm{osec}) \times$ ($5280 \mathrm{ft} / \mathrm{mmi}) \times(12 \mathrm{in} / 1 \mathrm{ft}) \times(2.54 \mathrm{~cm} / \mathrm{in}) \times$ $(10 \mathrm{~mm} / \mathrm{cm})=$ \qquad

Unit Conversions

- Sample problem: If I drive 60 mph , how fast is that in $\mathrm{mm} / \mathrm{sec}$?
- $(60 \mathrm{mi} / \mathrm{hr}) \times(1 \mathrm{hF} / 6 \mathrm{omin}) \times(1 \mathrm{~min} / 6 \mathrm{sec}) \times$ ($5280 \mathrm{ft} / 1 \mathrm{mi}) \times(12 \mathrm{in} / 1 \mathrm{ft}) \times(2.54 \mathrm{em} / 1 \mathrm{in}) \times$ $(10 \mathrm{~mm} / \mathrm{cm})=$ \qquad

Unit Conversions

- Sample problem: If I drive 60 mph , how fast is that in $\mathrm{mm} / \mathrm{sec}$?
- $(60) \times(1 / 60) \times(1 / 605 e c) \times(885280 / 1) \times(12 / 1) \times$ $(2.54 / 1) \times(10 \mathrm{~mm} / 1)=26822.4=2.6 \times 10^{4} \mathrm{~mm} / \mathrm{sec}$

Sig Figs and Scientific Notation

Sig Figs and Scientific Notation

- In order to write really large numbers and really small numbers and still comply with the rules for significant figures, you have to use scientific notation
- As a general rule for my class, you should never have an answer longer than three digits (but four isn't too bad)
- In problem solving, round your final answer only to significant figures

Review - Scientific Notation

- Move decimal so there is only one number to the left of the decimal
- Number of decimal place moves equals the power of ten

$$
\begin{aligned}
& 6200000=6.2 \times 10^{6} \\
& 0.00725=7.25 \times 10^{-3} \\
& 9.85 \times 10^{5}=985000
\end{aligned}
$$

$$
1.20 \times 10^{-3}=0.00120
$$

Review - Scientific Notation

- Multiplying numbers in scientific notation
- Multiply the base numbers
- Add the powers of ten
- Move the decimal as required (and increase the power of ten) so you only have one digit to the left of the decimal
$2 \times 10^{3} \times 4 \times 10^{4}=8 \times 10^{7}$
$4 \times 10^{5} \times 3 \times 10^{-3}=12 \times 10^{2}=1.2 \times 10^{3}$
$6 \times 10^{-7} \times 3 \times 10^{-2}=18 \times 10^{-9}=1.8 \times 10^{-8}$

Review - Scientific Notation

- Multiplying numbers in scientific notation
- Multiply the base numbers
- Add the powers of ten
- Move the decimal as required (and increase the power of ten) so you only have one digit to the left of the decimal
$2 \times 10^{3} \times 4 \times 10^{4}=8 \times 10^{7}$
Check Using
Scientific Notation
on Calculators
$4 \times 10^{5} \times 3 \times 10^{-3}=12 \times 10^{2}=1.2 \times 10^{3}$
$6 \times 10^{-7} \times 3 \times 10^{-2}=18 \times 10^{-9}=1.8 \times 10^{-8}$

Review - Scientific Notation

- Dividing numbers in scientific notation
- Divide the base numbers
- Subtract the powers of ten
- Move the decimal (and decrease the power of ten) so you only have one digit to the left of the decimal

$$
\begin{aligned}
& 8 \times 10^{6} \div 2 \times 10^{4}=4 \times 10^{2} \\
& 1 \times 10^{-8} \div 9 \times 10^{4}=0.111 \times 10^{-12}=1.11 \times 10^{-13} \\
& 4 \times 10^{5} \div 3 \times 10^{-3}=0.75 \times 10^{8}=7.5 \times 10^{7} \\
& 6 \times 10^{-7} \div 5 \times 10^{-2}=1.2 \times 10^{-5}
\end{aligned}
$$

Review - Scientific Notation

- Adding and subtracting numbers in scientific notation
- Convert numbers to decimal numbers
- Add or subtract
- Convert back to scientific notation
- Or just use a calculator
$8 \times 10^{6}+2 \times 10^{4}=8000000+20000=8020000$
$=8.02 \times 10^{6}$
$6 \times 10^{-3}-5 \times 10^{-2}=0.006-0.05=-0.044$
$=-4.4 \times 10^{-2}$

Review - Scientific Notation

- Speaking of calculators ...
- Everyone take out their calculators
- Make sure you can switch your display from decimal to scientific notation and back again
- Perform the following operation using the scientific notation functions of your calculator:
$6.39 \times 10^{7} \div 8.72 \times 10^{-5}=7.33 \times 10^{11}$

General Operating Procedure

- Perform all operations on your calculator without rounding if possible
- Round your final answer to the correct number of significant figures using scientific notation if needed
- If using intermittent rounding, never round to less than the correct number of sig figs
- On tests, I use $\pm 5 \%$ tolerance for intermittent rounding differences

Metrics With Prefixes

- Prefixes are added to units to stand for a power of ten
- 1 cm is a centimeter and centi is a prefix for 10^{-2} thus $1 \mathrm{~cm}=$ $1 \times 10^{-2} \mathrm{~m}$ or 0.01 m
- Note the chart on the inside front cover of your books

$\mathrm{lb} / \mathrm{in}^{2}=6.90 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$$\mathrm{Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=1.45 \times 10^{-4} \mathrm{bb} / \mathrm{in.}^{2}$			
Terms of se Units ${ }^{\dagger}$	Metric (SI) Multipliers		
	Prefix	Abbreviation	Value
	exa	E	10^{18}
$\mathrm{m} / \mathrm{s}^{2}$	peta	P	10^{15}
$\mathrm{m}^{2} / \mathrm{s}^{2}$	tera	T	10^{12}
$\mathrm{m}^{2} / \mathrm{s}^{3}$	giga	G	10^{9}
$\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$	mega	M	10^{6}
	kilo	k	10^{3}
	hecto	h	10^{2}
$\mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{s}^{3}\right)$	deka	da	10^{1}
$\mathrm{m}^{2} /\left(\mathrm{A}^{2} \cdot \mathrm{~s}^{3}\right)$	deci	d	10^{-1}
$\mathrm{s}^{4} /\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right)$	centi	c	10^{-2}
$\left(\mathrm{A} \cdot \mathrm{~s}^{2}\right)$	milli	m	10^{-3}
$\mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{s}^{2}\right)$	micro	μ	10^{-6}
$\mathrm{m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~A}^{2}\right)$	nano	n	10^{-9}
ectric current).	pico	p	10^{-1}
	femto	f	10^{-1}
	atto	a	10^{-1}

Metrics With Prefixes

- I want to sell you a memory stick with a 3,000 hB capacity for \$3. Is that a good deal?
$=14.7 \mathrm{lb} / \mathrm{in}^{2}=760$ torr
$\mathrm{lb} / \mathrm{in} .^{2}=6.90 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=1.45 \times 10^{-4} \mathrm{lb} / \mathrm{in}^{2}$.

Terms of se Units ${ }^{\text {h }}$	Metric (SI) Multipliers		
	Prefix	Abbreviation	Value
	exa	E	10^{18}
$\mathrm{m} / \mathrm{s}^{2}$	peta	P	10^{15}
$\mathrm{m}^{2} / \mathrm{s}^{2}$	tera	T	10^{12}
$\mathrm{m}^{2} / \mathrm{s}^{3}$	giga	G	10^{9}
$\mathrm{l}\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$	mega	M	10^{6}
	kilo	k	10^{3}
	hecto	h	10^{2}
$\mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{s}^{3}\right)$	deka	da	10^{1}
$\mathrm{m}^{2} /\left(\mathrm{A}^{2} \cdot \mathrm{~s}^{3}\right)$	deci	d	10^{-1}
$\mathrm{s}^{4} /\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	centi	c	10^{-2}
($\mathrm{A} \cdot \mathrm{s}^{2}$)	milli	m	10^{-3}
$\mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{s}^{2}\right)$	micro	μ	10^{-6}
$\mathrm{m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~A}^{2}\right)$	nano	n	10^{-9}
ectric current).	pico	p	10^{-1} 10^{-1}
	atto	a	10^{-1}

Metrics With Prefixes

- I want to sell you a memory stick with a 3,000 hB capacity for \$3. Is that a good deal?
- Not hardly. 3,000 hB is equal to $300,000 \mathrm{~B}$ which is 300 kB .
$=14.7 \mathrm{lb} / \mathrm{in}^{2}=760$ torr
$\mathrm{lb} / \mathrm{in} .^{2}=6.90 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}=1.45 \times 10^{-4} \mathrm{lb} / \mathrm{in}^{2} .^{2}$

Terms of se Units ${ }^{\dagger}$	Metric (SI) Multipliers		
	Prefix	Abbreviation	Value
	exa	E	10^{18}
$\mathrm{m} / \mathrm{s}^{2}$	peta	P	10^{15}
$\mathrm{m}^{2} / \mathrm{s}^{2}$	tera	T	10^{12}
$\mathrm{m}^{2} / \mathrm{s}^{3}$	giga	G	10^{9}
$\mathrm{l}\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$	mega	M	10^{6}
	kilo	k	10^{3}
	hecto	h	10^{2}
$\mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{s}^{3}\right)$	deka	da	10^{1}
$\mathrm{m}^{2} /\left(\mathrm{A}^{2} \cdot \mathrm{~s}^{3}\right)$	deci	d	10^{-1}
$\cdot \mathrm{s}^{4} /\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right)$	centi	c	10^{-2}
$\left(\mathrm{A} \cdot \mathrm{~s}^{2}\right)$	milli	m	10^{-3}
$\mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{~s}^{2}\right)$	micro	μ	10-6
$\mathrm{m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~A}^{2}\right)$	nano	n	\% 10^{-9}
ectric current).	femto	f	10^{-1}
	atto	a	10^{-14}

Summary Review

- MA.912.S.1.2: Can you determine appropriate and consistent standards of measurement for the data to be collected in a survey or experiment?
- Can you state the meaning of "unit" and "standard" and the difference between the two?

Summary Review

- Can you state the primary SI units?
- Can you use conversion factors to convert units?

QUESTIONS?

Homework

STOPPED HERE ON 9/4

