

DEVIL PFYSSICS
THE BADDEST CLASS ON CAXMTUS AP PHYSSOCS

GIANCOLI LESSON 3-1 TO 3-3 VECTORS AND SCALARS ADDITION OF VECTORS - GRAPHICAL METHOD SUBTRACTION OF VECTORS AND MULTIPLICATION OF A VECTOR BY A SCALAR

Big Idea(s):

- Big Idea 3: The interactions of an object with other objects can be described by forces.

Enduring Understanding(s):

- Enduring Understanding 3.A: All forces share certain common characteristics when considered by observers in inertial reference frames.
- Enduring Understanding 3.B: Classically, the acceleration of an object interacting with other objects can be predicted by using

Essential Knowledge(s):

- Forces are described by vectors.
- Forces are detected by their influence on the motion of an object.
- Forces have magnitude and direction.
- If an object of interest interacts with several other objects, the net force is the vector sum of the individual forces.

Learning Objective(s):

- The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation.

Learning Objective(s):

- The student is able to design a plan to collect and analyze data for motion (static, constant, or accelerating) from force measurements and carry out an analysis to determine the relationship between the net force and the vector sum of the individual forces.

Scalars and Vectors

Scalars

- Require only a number to represent them
- No direction involved
- Just a number
- Represents magnitude

Vectors

- Cannot be fully specified without both a number (magnitude) and direction
- Represented by an arrow from left to right over the variable
- Two vectors are equal only if both their magnitude and direction are the same

Examples of Vectors and Scalars

Vectors	Scalars
Displacement Distance Velocity Speed Acceleration Mass Force Time Weight Density Electric field Electric potential Magnetic field Energy Gravitational field Gravitational potential Torque Volumerature Area Electric charge Momentum Work Angular velocity Table 4.1 Examples of vectors and scalars.	

Multiplying a Vector by a

 Scalar- Multiplication of a vector by a scalar only affects the magnitude and not the direction

Adding vectors

Adding Vectors

Subtracting Vectors

(b)

Adding Vectors

Figure 3-3 A person walks 10.0 km east and then 5.0 km north

Adding Vectors Parallelogram Method

Adding Vectors Parallelogram Method

Adding Vectors Parallelogram Method

Adding Vectors

 Parallelogram Method

Adding Vectors Parallelogram Method

Adding Vectors Parallelogram Method

Adding Vectors

 Parallelogram Method

Adding Vectors

 Head-To-Tail Method

$+$

Adding Vectors

 Head-To-Tail Method

Adding Vectors

 Head-To-Tail Method

Adding Vectors

 Head-To-Tail Method

Adding Vectors

 Head-To-Tail Method

Adding Vectors

 Head-To-Tail Method
$\stackrel{\rightharpoonup}{A}$

Adding Vectors

 Head-To-Tail Method

Subtracting Vectors

(b)

Subtracting Vectors

 Head-To-Tail Method

Subtracting Vectors

 Head-To-Tail Method

Adding Vectors

Head-To-Tail by Components

Figure 3-3 A person walks 10.0 km east and then 5.0 km north

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

Adding Vectors

 Head-To-Tail by Components

> Pythagorization $\vec{R}^{2}=\vec{R}_{x}^{2}+\vec{R}_{y}^{2}$
> $\vec{R}=\sqrt{\vec{R}_{x}^{2}+\vec{R}_{y}^{2}}$

> Pythagorization $\vec{R}^{2}=\vec{R}_{x}^{2}+\vec{R}_{y}^{2}$
> $\vec{R}=\sqrt{\vec{R}_{x}^{2}+\vec{R}_{y}^{2}}$

\vec{R}_{1}

$$
\begin{aligned}
& \vec{R}_{x}=\vec{A}_{x}+\vec{B}_{x} \\
& \vec{R}_{y}=\vec{A}_{y}+\vec{B}_{y}
\end{aligned}
$$

Simple,
 Right?

Solve for $\mathrm{x}=3$

This gives magnitude. What about direction?

Trigonometry Revisited

$$
\begin{aligned}
& \sin x=\frac{o p p}{h y p}=\frac{B}{C}, x^{o}=\sin ^{-1} \frac{B}{C} \\
& \cos x=\frac{a d j}{h y p}=\frac{A}{C}, x^{o}=\cos ^{-1} \frac{A}{C} \\
& \tan x=\frac{o p p}{a d j}=\frac{B}{A}, x^{o}=\tan ^{-1} \frac{B}{A}
\end{aligned}
$$

$\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}$

Learning Objective(s):

- The student is able to represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation.

Learning Objective(s):

- The student is able to design a plan to collect and analyze data for motion (static, constant, or accelerating) from force measurements and carry out an analysis to determine the relationship between the net force and the vector sum of the individual forces.

Enduring Understanding(s):

- Enduring Understanding 3.A: All forces share certain common characteristics when considered by observers in inertial reference frames.
- Enduring Understanding 3.B: Classically, the acceleration of an object interacting with other objects can be predicted by using

Essential Knowledge(s):

- Forces are described by vectors.
- Forces are detected by their influence on the motion of an object.
- Forces have magnitude and direction.
- If an object of interest interacts with several other objects, the net force is the vector sum of the individual forces.

Big Idea(s):

- Big Idea 3: The interactions of an object with other objects can be described by forces.

QUESTIONS?

Homework

- No Homework
- At least not yet
- Trigonometry for Vectors Worksheet
- Reading Activity Lsn 3-4
- After 3-4, HW Lsn 3-2 to 3-4, \# 1-16

