

DEVIL PHYSSOCS
THE RADDEST CLASS ON GAXMPTS AP DHYSICS

2-1: REFERENCE FRAMES AND DISPLACEMENT
 2-2: AVERAGE VELOCITY 2-3: INSTANTANEOUS VELOCITY

Big Idea

- Big Idea 3: The interactions of an object with other objects can be described by forces.

Enduring Understanding

- Enduring Understanding 3.A: All forces share certain common characteristics when considered by observers in inertial reference frames.

Essential Knowledge

- Essential Knowledge 3.A.1: An observer in a particular reference frame can describe the motion of an object using such quantities as position, displacement, distance, velocity, speed, and acceleration.

Essential Knowledge

- Displacement, velocity, and acceleration are all vector quantities.
- Displacement is change in position. Velocity is the rate of change of position with time. Acceleration is the rate of change of velocity with time.
Changes in each property are expressed by subtracting initial values from final values.
- A choice of reference frame determines the direction and the magnitude of each of these quantities.

Learning Objectives

- (3.A.1.1): The student is able to express the motion of an object using narrative, mathematical, and graphical representations.
- (3.A.1.2): The student is able to design an experimental investigation of the motion of an object.

Learning Objectives

" (3.A.1.3): The student is able to analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical, and graphical representations.

Introductory Video: Displacement, Velocity and Acceleration

Mechanics

- The study of the motion of objects and the related concepts of force and energy.
- Galileo Galilee (1564-1642)
- Sir Isaac Newton (1642-1727)
- Building blocks of all areas of modern physics

Mechanics

- Two major divisions:
- Kinematics: description of how things move
- Dynamics: force and why things move the way they do
- Chapters 2 and 3 deal with kinematics

Translational Motion

- Objects that move without rotating
- Moves along a straight-line path
- One-dimensional motion

Translational Motion

Translational Motion

Frame of Reference

- The point from which you are viewing something
- The point from which you are measuring something
- We normally place a set of coordinate axes (a coordinate plane) with the origin resting on the reference point

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To an observer outside the train, how fast and in what direction is the seated woman moving?

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To an observer outside the train, how fast and in what direction is the seated woman moving?
" $20 \mathrm{~m} / \mathrm{s}$ from left to right

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To an observer outside the train, how fast and in what direction is the walking man moving?

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To an observer outside the train, how fast and in what direction is the walking man moving?
" $23 \mathrm{~m} / \mathrm{s}$ from left to right

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To the seated observer on the right, how fast and in what direction is the walking man moving?

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To the seated observer on the right, how fast and in what direction is the walking man moving?
" 3 m/s toward him

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To the walking man , how fast and in what direction is the seated observer moving?

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To the walking man , how fast and in what direction is the seated observer moving?
" $3 \mathrm{~m} / \mathrm{s}$ toward him

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To the walking man, how fast and in what direction is an observer outside the train moving?

Frame of Reference

- A train is moving from left to right at $20 \mathrm{~m} / \mathrm{s}$. A man walks toward the front of the train at $3 \mathrm{~m} / \mathrm{s}$.
- To the walking man, how fast and in what direction is an observer outside the train moving?
- $23 \mathrm{~m} / \mathrm{s}$ from the walking man's left to his right

Distance vs. Displacement

- Distance: measurement of the entire length travelled without respect to direction
- Includes magnitude only, a scalar
- Displacement: change in position of an object, or, how far the object is from its original position and in what direction
- Includes both magnitude and direction, a vector

Distance vs. Displacement

- Pike's Peak Marathon

Distance vs. Displacement

- Pike's Peak Marathon Distance: 14, $\mathbf{1}$ mi

Manitou Springs
6,500 ft
Pikes Peak
$14,110 \mathrm{ft}$

Distance vs. Displacement

- Pike's Peak Marathon

Distance: 14.1 mi
Displacement
Pikes Peak
14, 110 ft

Manitou Springs
6,500 ft

Scalar vs. Vector

Distance: 14.1 mi

Displacement

Displacement

$$
\Delta x=x_{2}-x_{1}
$$

- "The change in position is equal to the second position minus the first position"
- Example 1: You are standing on a number line at 23 and suffer a blow to the head. When you wake up, you are laying at -17 . What was your displacement?

Displacement

$$
\Delta x=x_{2}-x_{1}
$$

- "The change in position is equal to the second position (minus the first position"
- Example 1: You are standing on a number line at 23 and suffer a blow to the head. When you wake up, you are laying at -17 . What was your displacement?

Displacement

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1} \\
& \Delta x=-17-23=-40
\end{aligned}
$$

- Example 1: You are standing on a number line at 23 and suffer a blow to the head. When you wake up, you are laying at -17 . What was your displacement?
- Your displacement is 40 to the left

Displacement

- Example 2: Having

$\Delta x=x_{2}-x_{1}$

 nothing better to do, you walk 3 miles east and 4 miles north.- What distance did you travel?
- What was your displacement?
- Why couldn't you find anything better to do?

Displacement

- Example 2: Having

$\Delta x=x_{2}-x_{1}$

 nothing better to do, you walk 3 miles east and 4 miles north.- What distance did you travel?
- 7 mi
- What was your displacement?

Displacement

- Example 2: Having

$\Delta x=x_{2}-x_{1}$

 nothing better to do, you walk 3 miles east$$
a^{2}+b^{2}=c^{2}
$$ and 4 miles north.

- What was your

$$
c=\sqrt{a^{2}+b^{2}}
$$ displacement?

- Pythagorize 5 mi
- Why couldn't you find anything better to do?

3 mi

Displacement

- Example 2: Having

$\Delta x=x_{2}-x_{1}$

 nothing better to do, you walk 3 miles east $a^{2}+b^{2}=c^{2}$ and 4 miles north.- Why couldn't you find $c=\sqrt{a^{2}+b^{2}}$ anything better to do?
- You had already finished

Speed

- Distance traveled in a given time interval
- Distance per unit time
- $60 \mathrm{mph}, 35 \mathrm{~m} / \mathrm{s}$
- Vector or scalar?

Average Speed

- Distance travelled divided by time elapsed
- Avg. speed = distance travelled/time elapsed

Velocity

- Displacement traveled in a given time interval
- Displacement per unit time
- $60 \mathrm{mph}, 35 \mathrm{~m} / \mathrm{s}$
- Vector or scalar?

Average Velocity

- Displacement divided by time elapsed
- Avg. velocity = displacement/time elapsed

Speed vs. Velocity

Distance: 14.1 mi

Displacement

Manitou Springs
6,500 ft
Pikes Peak
14,110 ft

Speed vs. Velocity

- Can the magnitude of the velocity ever be more than speed for any given timed movement of a body?

Speed vs. Velocity

- Can the magnitude of the velocity ever be more than speed for any given timed movement of a body?

Distance equals displacement

Distance is greater than or equal to displacement but never less than displacement

Speed vs. Velocity

- Can the magnitude of the velocity ever be more than speed for any given timed movement of a body?
- Since distance is always greater than or equal to displacement
- And since speed is distance/time
- And since velocity is displacement/time

Avg. Velocity: The Equation

Avg. Velocity: The Equation

$\bar{v}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t}$

Average Velocity of a Car

Average Velocity - Air Track

Steven Le has my photogates!

Instantaneous Velocity

- Velocity at a split second of time
- The average velocity of an infinitesimally short time interval

Instantaneous Velocity: The Equation

Instantaneous Velocity - Air Track

Steven Le has my photogates!

Instantaneous Velocity

- Instantaneous speed will always equal the magnitude of the instantaneous velocity. Why?

Instantaneous Velocity

- Instantaneous speed will always equal the magnitude of the instantaneous velocity. Why?
- When distance/displacement become infinitesimally small, their difference also becomes infinitesimally small, approaching zero

Learning Objectives

- (3.A.1.1): The student is able to express the motion of an object using narrative, mathematical, and graphical representations.
- (3.A.1.2): The student is able to design an experimental investigation of the motion of an object.

Learning Objectives

" (3.A.1.3): The student is able to analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical, and graphical representations.

Essential Knowledge

- Essential Knowledge 3.A.1: An observer in a particular reference frame can describe the motion of an object using such quantities as position, displacement, distance, velocity, speed, and acceleration.

Essential Knowledge

- Displacement, velocity, and acceleration are all vector quantities.
- Displacement is change in position. Velocity is the rate of change of position with time. Acceleration is the rate of change of velocity with time.
Changes in each property are expressed by subtracting initial values from final values.
- A choice of reference frame determines the direction and the magnitude of each of these quantities.

Enduring Understanding

- Enduring Understanding 3.A: All forces share certain common characteristics when considered by observers in inertial reference frames.

Big Idea

- Big Idea 3: The interactions of an object with other objects can be described by forces.

QUESTIONS?

Homework

\#1-14

