Problem Solving Process (Pg 91)

Example 4-11

A person exerts 40.0N of force by pulling a rope which is at a 30.0° angle to the horizontal on a box with a mass of 10.0kg. Calculate:

- a. the acceleration of the box
- b. the magnitude of the upward force exerted by the table on the box

Process Step	Illustration
1. Draw a sketch	40N 30°
2. Draw a free-body diagram	$F_{N} \qquad F_{V}$ $10kg \qquad F_{H}$ F_{W}

3. Resolve vectors into components

$$\sin 30^{\circ} = \frac{F_V}{40N}$$
 $F_V = (40N)(\sin 30^{\circ})$
 $F_V = 20.0N$

$$\cos 30^{\circ} = \frac{F_H}{40N}$$

$$F_H = (40N)(\cos 30^{\circ})$$

$$F_H = 34.6N$$

4. Apply Newton's second law to each component direction separately

$$F_V = 20.0N$$
 $F_H = 34.6N$
 $F_W = mg = (10)(9.81)$
 $F_W = 98.1N$

$$\frac{\text{Vertical}}{\sum F = ma}$$
 $a = 0$
 $F_N + F_V - F_W = 0$

$$\frac{\text{Horizontal}}{\sum F = ma}$$
 $F_H = ma$

5. Solve equations for unknowns

Vertical

$$F_N + F_V - F_W = 0$$

$$F_N = F_{W-}F_V$$

$$F_N = 98.1 - 20.0 = 78.1N$$

$$\frac{\text{Horizontal}}{F_H = ma}$$

$$\frac{F_H}{m} = a$$

$\frac{34.6N}{10kg}=a$
$3.46 m/s^2 = a$