## Problem Solving Process (Pg 91)

## Example 4-11

A person exerts 40.0 N of force by pulling a rope which is at a $30.0^{\circ}$ angle to the horizontal on a box with a mass of 10.0 kg . Calculate:
a. the acceleration of the box
b. the magnitude of the upward force exerted by the table on the box


| 3. Resolve vectors into components | $\begin{gathered} \sin 30^{\circ}=\frac{F_{V}}{40 N} \\ F_{V}=(40 N)\left(\sin 30^{\circ}\right) \\ F_{V}=20.0 N \end{gathered}$ $\begin{gathered} \cos 30^{\circ}=\frac{F_{H}}{40 N} \\ F_{H}=(40 N)\left(\cos 30^{\circ}\right) \\ F_{H}=34.6 \mathrm{~N} \end{gathered}$ |
| :---: | :---: |


| 4. Apply Newton's second law to each component direction separately | $\begin{gathered} \boldsymbol{F}_{V}=20.0 \mathrm{~N} \\ \boldsymbol{F}_{\boldsymbol{H}}=34.6 \mathrm{~N} \\ \boldsymbol{F}_{W}=\boldsymbol{m g}=(10)(9.81) \\ \boldsymbol{F}_{W}=\mathbf{9 8 . 1} \mathrm{N} \\ \underline{\text { Vertical }} \\ \sum \boldsymbol{F}=\boldsymbol{m} \boldsymbol{a} \\ \boldsymbol{a}=\mathbf{0} \\ \boldsymbol{F}_{N}+\boldsymbol{F}_{V}-\boldsymbol{F}_{W}=\mathbf{0} \end{gathered}$ <br> Horizontal $\begin{aligned} \sum \boldsymbol{F} & =\boldsymbol{m} \boldsymbol{a} \\ \boldsymbol{F}_{\boldsymbol{H}} & =\boldsymbol{m} \boldsymbol{a} \end{aligned}$ |
| :---: | :---: |
| 5. Solve equations for unknowns | Vertical $\begin{gathered} \boldsymbol{F}_{N}+\boldsymbol{F}_{V}-\boldsymbol{F}_{W}=\mathbf{0} \\ \boldsymbol{F}_{\boldsymbol{N}}=\boldsymbol{F}_{W-} \boldsymbol{F}_{V} \\ \boldsymbol{F}_{\boldsymbol{N}}=\mathbf{9 8 . 1}-\mathbf{2 0 . 0}=\mathbf{7 8 . 1} \mathbf{N} \end{gathered}$ <br> Horizontal $\begin{gathered} F_{H}=m a \\ \frac{F_{H}}{m}=a \end{gathered}$ |


|  | $\frac{34.6 \mathrm{~N}}{10 \mathrm{~kg}}=a$ |
| :--- | :---: |
| $3.46 \mathrm{~m} / \mathrm{s}^{2}=a$ |  |

