## Answers to exam-style questions

## Option B

## $1 \checkmark=1$ mark

1 a i The forces are as shown in the left diagram:


The perpendicular distance between the axis and the line of the tension force is $L \sin 30^{\circ} . \checkmark$
Rotational equilibrium by taking torques about an axis through the point of support gives:
$W \times \frac{L}{2}=T L \sin 30^{\circ} \checkmark$
Hence $W=T=15 \mathrm{kN}$. $\checkmark$
ii Translational equilibrium gives: $T \cos 30^{\circ}=F_{x}$ and $T \sin 30^{\circ}+F_{y}=15 \mathrm{kN} . \checkmark$
Hence $T \cos 30^{\circ}=F_{x}=12.99 \approx 13 \mathrm{kN}$ and $F_{y}=7.5 \mathrm{kN}$ so that the magnitude of $F$ is
$F=\sqrt{12.99^{2}+7.5^{2}}=15 \mathrm{kN} . \downarrow$
And the direction to the horizontal is $\theta=\tan ^{-1} \frac{7.5}{12.99}=30^{\circ} . \checkmark$
b The critical case is when the worker stands all the way to the right.
Rotational equilibrium in this case gives: $W \times \frac{L}{2}+m g L=T L \sin 30^{\circ} . \checkmark$
Solving for the tension gives: $T=16.7 \approx 17 \mathrm{kN} . ~$.
2 a The forces are shown in the diagram and they are the weight of the cylinder, mg. $\checkmark$
The normal reaction, $N, \checkmark$
A frictional force $f$.

b i Newton's second law for the translational motion down the plane is $M g \sin \theta-f=M a . \checkmark$ For the rotational motion by taking torques about the axis through the centre of mass is
$f R=\left(\frac{1}{2} M R^{2}\right) \alpha=\frac{1}{2} M R a \checkmark$
$M g \sin \theta-\frac{1}{2} M a=M a \checkmark$
From which the result follows.
ii $f=M g \sin \theta-M a=12 \times 9.8 \times \sin 30^{\circ}-12 \times \frac{2}{3} \times 9.8 \times \sin 30^{\circ}=19.6 \approx 20 \mathrm{~N} \boldsymbol{J}$
c The rate of change of the angular momentum is the net torque. $\checkmark$
And this is $f R=19.6 \times 0.20=3.92 \approx 4.0 \mathrm{Nm}$.
3 a i When the ring makes contact with the disc and while it is sliding, it exerts a frictional force on the disc but the disc exerts equal and opposite force on the ring.
Hence the net torque is zero and hence angular momentum is conserved. $\checkmark$
ii The initial angular momentum of the disc is $L=I \omega=\frac{1}{2} M R^{2} \omega=\frac{1}{2} \times 4.00 \times 0.300^{2} \times 42.0=7.56 \mathrm{Js}$.
After the ring lands the total angular momentum is $L=\frac{1}{2} \times 4.00 \times 0.300^{2} \times \omega+2.00 \times 0.300^{2} \times \omega$.
Hence $\frac{1}{2} \times 4.00 \times 0.300^{2} \times \omega+2.00 \times 0.300^{2} \times \omega=7.56 \mathrm{Js}$ which gives $\omega=21 \mathrm{rad} \mathrm{s}^{-1} . \checkmark$
iii The initial kinetic energy is $E_{\mathrm{K}}=\frac{1}{2} I \omega^{2}=\frac{1}{2} \times\left(\frac{1}{2} \times 4.00 \times 0.300^{2}\right) \times 42.0^{2}=158.76 \mathrm{~J} . \boldsymbol{\checkmark}$
The final is $E_{\mathrm{K}}=\frac{1}{2} \times\left(\frac{1}{2} \times 4.00 \times 0.300^{2}\right) \times 21.0^{2}+\frac{1}{2} \times\left(2.00 \times 0.300^{2}\right) \times 21.0^{2}=79.38 \mathrm{~J}$ leading to a loss of $79.38 \approx 79.4 \mathrm{~J}$.
b i $\alpha=\frac{\Delta \omega}{\Delta t}=\frac{21.0}{3.00}=7.00 \mathrm{rads}^{-2} \checkmark$
ii $\theta=\frac{1}{2} \alpha t^{2}=\frac{1}{2} \times 7.00 \times 3.00^{2}=31.5 \mathrm{rad} \checkmark$
Which is $\frac{31.5}{2 \pi}=5.0$ revolutions.
iii $\Gamma=\frac{\Delta L}{\Delta t} \Omega$
$\Gamma=\frac{2.00 \times 0.300^{2} \times 21.0}{3.00}=1.26 \mathrm{Nm} \checkmark$
iv It is equal and opposite to that on the ring.
Because the force on the ring is equal and opposite to that on the disc.
c The change in the kinetic energy of the ring is $\frac{1}{2} \times\left(2.00 \times 0.300^{2}\right) \times 21.0^{2}=39.69 \mathrm{~J}$
And so the power developed is $\frac{39.69}{3.00}=13.2 \mathrm{~W}$.
(This can also be done through $\left.P=\Gamma \bar{\omega}=1.26 \times \frac{21.0}{2}=13.2 \mathrm{~W}.\right)$
$4 \mathbf{a} \quad \mathbf{i}$ The temperature at B doubled at constant volume so the pressure also doubles at $p_{\mathrm{B}}=4.00 \times 10^{5} \mathrm{~Pa}$.
ii From $p V^{\frac{5}{3}}=c$ and $p V=n R T$ we find $p^{-\frac{2}{3}} T^{\frac{5}{3}}=c^{\prime} . \checkmark$
Hence $\left(4.00 \times 10^{5}\right)^{-\frac{2}{3}} \times(600)^{\frac{5}{3}}=\left(2.00 \times 10^{5}\right)^{-\frac{2}{3}} \times T_{\mathrm{C}}^{\frac{5}{3}} \quad$ leading to $T_{\mathrm{C}}=455 \mathrm{~K} . \checkmark$
iii The volume at B is $V_{\mathrm{B}}=\frac{n R T_{\mathrm{B}}}{p_{\mathrm{B}}}=\frac{1.00 \times 8.31 \times 300}{2.00 \times 10^{5}}=1.246 \times 10^{-2} \approx 1.25 \times 10^{-2} \mathrm{~m}^{3}$.
And so $\frac{V_{\mathrm{B}}}{T_{\mathrm{B}}}=\frac{V_{\mathrm{C}}}{T_{\mathrm{C}}} \Rightarrow V_{\mathrm{C}}=V_{\mathrm{B}} \frac{T_{\mathrm{C}}}{T_{\mathrm{B}}}=1.246 \times 10^{-2} \times \frac{455}{300}=1.890 \times 10^{-2} \approx 1.89 \times 10^{-2} \mathrm{~m}^{3}$.
b i $\Delta U_{\mathrm{AB}}=\frac{3}{2} R n \Delta T=+\frac{3}{2} \times 8.31 \times 1.00 \times 300 \boldsymbol{\checkmark}$
$\Delta U_{\mathrm{AB}}=+3739 \approx+3.74 \times 10^{3} \mathrm{~J}$
ii This happens from C to A: $W=-p \Delta V=2.00 \times 10^{5} \times(1.25-1.89) \times 10^{-2}=-1280 \mathrm{~J}$ and the change in internal energy is $\Delta U_{\mathrm{AB}}=\frac{3}{2} R n \Delta T=\frac{3}{2} \times 8.31 \times 1.00 \times(300-455)=-1932 \mathrm{~J}$.

Hence $\mathrm{Q}=\Delta U+W=-1932-1280=-3212 \approx-3.21 \times 10^{3} \mathrm{~J}$
c Any heat engine working in a cycle cannot transform all the heat into mechanical work.
And this engine rejects heat into the surroundings as it should.
5 a i A curve along which no heat is exchanged.
ii An adiabatic expansion involves a piston moving outwards fast.
Hence molecules bounce back from the piston with a reduced speed and hence lower temperature. $\checkmark$
b The product pressure $\times$ volume is constant for an isothermal.
This is the case for points A and C (product is 100 J ).
And the same is true for any other point on the curve, for example at $p=2.00 \times 10^{5} \mathrm{~Pa}, V=0.50 \times 10^{-3} \mathrm{~m}^{3}$
c i $\frac{V_{\mathrm{A}}}{T_{\mathrm{A}}}=\frac{V_{\mathrm{B}}}{T_{\mathrm{B}}} \Rightarrow T_{\mathrm{B}}=T_{\mathrm{A}} \frac{V_{\mathrm{B}}}{V_{\mathrm{A}}} \checkmark$
$T_{\mathrm{B}}=300 \times \frac{0.38}{0.20}=570 \mathrm{~K} \checkmark$
At C $T_{\mathrm{C}}=300 \mathrm{~K}$ since AC is isothermal.
ii Using data at A: $n=\frac{p V}{R T}=\frac{5.00 \times 10^{5} \times 0.20 \times 10^{-3}}{8.31 \times 300} \checkmark$

$$
n=4.01 \times 10^{-2} \checkmark
$$

d $\mathbf{i}$ Energy is transferred out of the gas along C to $\mathrm{A} . \checkmark$
From $Q=\Delta U+W$ and $\Delta U=0$ we find $Q=-160 \mathrm{~J}$.
ii This happens from A to B: $W=5.00 \times 10^{5} \times(0.38-0.20) \times 10^{-3}=90 \mathrm{~J}$ and
$\Delta U=\frac{3}{2} \times 8.31 \times 4.01 \times 10^{-2} \times(570-300)=135 \mathrm{~J}$.
And so $Q=135+90=225 \mathrm{~J}$.
iii $W_{\mathrm{BC}}=-\Delta U_{\mathrm{BC}}$ (since BC is an adiabatic). $\checkmark$
And $\Delta U_{\mathrm{BC}}=-\Delta U_{\mathrm{AB}}=-135$ (since AC is an isothermal). $\sigma$
OR
Since for the whole cycle $\Delta U=0$, the net work is $Q_{\text {in }}-Q_{\text {out }}=225-160=65 \mathrm{~J}$.
And $W_{\text {net }}=W_{\mathrm{AB}}+W_{\mathrm{BC}}+W_{\mathrm{CA}} \Rightarrow 128=90+W_{\mathrm{BC}}-160 \Rightarrow W_{\mathrm{BC}}=198 \mathrm{~J}$.
iv The efficiency is $e=\frac{W_{\text {net }}}{\mathrm{Q}_{\mathrm{in}}}=\frac{65}{225}=0.290$.
6 a For an adiabatic, $p V^{\frac{5}{3}}=c$ and since $V=\frac{n R T}{p} \cdot \checkmark$
we find $p\left(\frac{n R T}{p}\right)^{\frac{5}{3}}=c . \checkmark$
Raising to the $3^{\text {rd }}$ power gives $p^{3}\left(\frac{n R T}{p}\right)^{5}=c^{3}$ and so the result. $\checkmark$
b i From $\frac{T^{5}}{p^{2}}=$ constant we find $\frac{320^{5}}{\left(2.0 \times 10^{5}\right)^{2}}=\frac{T^{5}}{\left(2.0 \times 10^{6}\right)^{2}} . \checkmark$

$$
T=320 \times\left(\frac{2.0 \times 10^{6}}{2.0 \times 10^{5}}\right)^{\frac{2}{5}}=803.8 \approx 800 \mathrm{~K} \checkmark
$$

ii From $p V^{\frac{5}{3}}=$ constant we find.

$$
V=\left(\frac{2.0 \times 10^{5}}{2.0 \times 10^{6}}\right)^{\frac{3}{3}} \times 0.40=0.10 \mathrm{~m}^{3} \checkmark
$$

c The number of moles is $n=\frac{p V}{R T}=\frac{2.0 \times 10^{5} \times 0.40}{8.31 \times 320}=30 . \checkmark$

$$
\Delta U=\frac{3}{2} R n \Delta T=\frac{3}{2} \times 8.31 \times 30 \times(804-320)
$$

$\Delta U=0.181 \mathrm{MJ}$
7 Delineate a rectangular region in the liquid whose top surface is the free surface of the liquid and has area $A$.


Equilibrium demands that weight $=$ net upward force. $\boldsymbol{\checkmark}$
In other words that $\rho A h g=p A-p_{0} A$.
From which the result follows.
b i In free fall gravity "disappears" and so the pressure is just the atmospheric pressure. $\checkmark$
ii When the liquid accelerates upwards there is an additional force pushing the liquid upwards and so the pressure increases
c A body immersed in a fluid experiences an upward force that is equal to the weight of the displaced liquid.
d i Equilibrium demands that $\rho_{\text {wood }} V g=\rho_{\text {water }} \times 0.75 \mathrm{Vg}$.
Hence $\rho_{\text {wood }}=\rho_{\text {water }} \times 0.75=750 \mathrm{~kg} \mathrm{~m}$.
ii Equilibrium demands that $\rho_{\text {wood }} V g=\rho_{\text {oil }} \times 0.82 \mathrm{Vg}$
Hence $\rho_{\text {oil }}=\frac{\rho_{\text {wood }}}{0.82}=\frac{750}{0.82}=914.6 \approx 910 \mathrm{~kg} \mathrm{~m} . \checkmark$
8 a i $\quad p_{0}+\rho g z=p_{0}+\frac{1}{2} \rho v^{2}$ hence $v=\sqrt{2 g z} \checkmark$
$v=\sqrt{2 \times 9.8 \times(220+40)}=71.4 \approx 71 \mathrm{~m} \mathrm{~s}^{-1}$
ii That the flow is laminar, $\sqrt{ }$ and there are no losses of energy. $\checkmark$
$\mathbf{b}$ The flow rate is given by $\mathrm{Q}=A v=\pi R^{2} v$. $\checkmark$
Hence $Q=\pi \times(0.25)^{2} \times 71.4=14 \mathrm{~m}^{3} \mathrm{~s}^{-1} \checkmark$
c i $\quad p=p_{0}+\rho g h=1.0 \times 10^{5}+1000 \times 9.8 \times 40 \checkmark$
$p=4.9 \times 10^{5} \mathrm{~Pa} \boldsymbol{} \downarrow$
ii The pressure is given by $p_{0}+\rho g z=p+\frac{1}{2} \rho v^{2}$ where the speed can be found from the flow rate (i.e. the continuity equation) $\pi \times(0.65)^{2} \times v=14.02 \approx 14 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

$$
\text { i.e, } v=10.56 \approx 11 \mathrm{~ms}^{-1} . \checkmark
$$

And hence

$$
p=p_{0}+\rho g z-\frac{1}{2} \rho v^{2}=1.0 \times 10^{5}+1000 \times 9.8 \times 40-\frac{1}{2} \times 1000 \times 10.56^{2}=4.36 \times 10^{5} \approx 4.4 \times 10^{5} \mathrm{~Pa}
$$

d The speed at depth h is $v=\sqrt{2 g h}$.
The flow rate is $\mathrm{Q}=A v=\pi R^{2} \sqrt{2 g h}$ and has to equal $0.40 \mathrm{~m}^{3} \mathrm{~s}^{-1} \cdot \checkmark$
Hence $h=\frac{1}{2 g}\left(\frac{0.40}{\pi R^{2}}\right)^{2}=\frac{1}{2 \times 9.8}\left(\frac{0.40}{\pi \times 0.03^{2}}\right)^{2}=7.2 \mathrm{~m}$
9 a The left side is connected to the holes in the tube past which the air moves fast.
Hence the pressure there is low and the liquid is higher.
b Call the pressure at the top of the left column $p_{\mathrm{L}}$ and that on the right $p_{R}$. Then
$p_{\mathrm{L}}+\rho_{\text {air }} g z+\frac{1}{2} \rho v_{\mathrm{L}}^{2}=p_{\mathrm{R}}+\rho_{\text {air }} g z+\frac{1}{2} \rho v_{\mathrm{R}}^{2}$ and with $v_{\mathrm{L}}=0 ; v_{\mathrm{R}}=v, \boldsymbol{\checkmark}$
it becomes $v=\sqrt{\frac{2\left(p_{\mathrm{L}}-p_{\mathrm{R}}\right)}{\rho_{\text {air }}}} \cdot \checkmark$
But $p_{\mathrm{L}}-p_{\mathrm{R}}=\rho g h$ which gives the result.
c $v=\sqrt{\frac{2 \rho g h}{\rho_{\text {air }}}}=\sqrt{\frac{2 \times 920 \times 9.8 \times 0.25}{1.20}} \cdot \checkmark$
$v=61.3 \approx 61 \mathrm{~m} \mathrm{~s}^{-1} \cdot \checkmark$
10 a Smooth streamlines. $\checkmark$
Closer together above the aerofoil. $\checkmark$
b i From $p_{\mathrm{L}}+\rho g z+\frac{1}{2} \rho v_{\mathrm{L}}^{2}=p_{\mathrm{U}}+\rho g z+\frac{1}{2} \rho v_{\mathrm{U}}^{2}$ we obtain $\Delta p=p_{\mathrm{L}}-p_{\mathrm{U}}=\frac{1}{2} \rho v_{\mathrm{U}}^{2}-\frac{1}{2} \rho v_{\mathrm{L}}^{2} \cdot \checkmark$
Hence $F=A \Delta p=A\left(\frac{1}{2} \rho v_{\mathrm{U}}^{2}-\frac{1}{2} \rho v_{\mathrm{L}}^{2}\right)=8.0 \times \frac{1}{2} \times 1.20 \times\left(85^{2}-58^{2}\right)=18.53 \approx 19 \mathrm{kN}$.
ii That the area above and below the foil are equal/that the flow is laminar. $\sqrt{ }$
c The net upward force on the foil is about 16 kN and this is an estimate of the downward force on the fuselage.
Ignoring effects of torque. $\checkmark$
d i The streamlines are no longer smooth but become eddy like and chaotic.
ii Everywhere on the top side of the aerofoil and especially to the right. $\checkmark$
iii It will be drastically reduced.
11 a In undamped oscillations the energy is constant and so the amplitude stays the same. $\checkmark$
In damped oscillations energy is dissipated and the amplitude keeps getting smaller.
$\mathbf{b} \mathbf{i} 8.0 \mathrm{~s} \checkmark$
ii Correct readings of amplitudes. $\checkmark$
$Q=2 \pi \frac{26^{2}}{26^{2}-22^{2}}$
$Q \approx 22 \checkmark$
c i Amplitude reducing more every cycle. $\checkmark$
Period staying essentially unchanged/very slightly increases.
ii It will decrease.

d $Q=2 \pi \frac{5.0}{5.0-4.6} \checkmark$
$Q \approx 79 \checkmark$
12 a All oscillating systems have their own natural frequency of oscillation
When a periodic external force is applied to the system the amplitude of oscillation will depnd on the relation of the external frequency to the natural frequency. $\checkmark$
The amplitude will be large when the frequency of the external force is the same as the natural frequency in which case we have resonance external. $\checkmark$
b Wider and lower curve.
With peak shifted slightly to the right. $\checkmark$
See curve in blue.

c i Same intersection point. $\sqrt{ }$
Less steep. $\sqrt{ }$
See curve in blue.

ii $10 \mathrm{~Hz} \boldsymbol{J}$

