Answers to exam-style questions

Option B

- 1 ✓ = 1 mark
- 1 a i The forces are as shown in the left diagram:

The perpendicular distance between the axis and the line of the tension force is $L \sin 30^\circ$. Rotational equilibrium by taking torques about an axis through the point of support gives:

$$W \times \frac{L}{2} = TL \sin 30^\circ \checkmark$$

Hence W = T = 15 kN.

ii Translational equilibrium gives: $T \cos 30^\circ = F_x$ and $T \sin 30^\circ + F_y = 15$ kN.

Hence $T \cos 30^\circ = F_x = 12.99 \approx 13 \text{ kN}$ and $F_y = 7.5 \text{ kN}$ so that the magnitude of F is

$$F = \sqrt{12.99^2 + 7.5^2} = 15 \,\mathrm{kN}$$
.

And the direction to the horizontal is $\theta = \tan^{-1} \frac{7.5}{12.99} = 30^{\circ}$.

b The critical case is when the worker stands all the way to the right. \checkmark

Rotational equilibrium in this case gives: $W \times \frac{L}{2} + mgL = TL \sin 30^\circ$.

Solving for the tension gives: $T = 16.7 \approx 17 \text{ kN}$.

2 a The forces are shown in the diagram and they are the weight of the cylinder, mg. ✓
 The normal reaction, N, ✓

A frictional force f. \checkmark

b i Newton's second law for the translational motion down the plane is $Mg\sin\theta - f = Ma$. For the rotational motion by taking torques about the axis through the centre of mass is

$$fR = \left(\frac{1}{2}MR^2\right)\alpha = \frac{1}{2}MRa \checkmark$$
$$Mg\sin\theta - \frac{1}{2}Ma = Ma \checkmark$$

From which the result follows.

ii
$$f = Mg \sin \theta - Ma = 12 \times 9.8 \times \sin 30^{\circ} - 12 \times \frac{2}{3} \times 9.8 \times \sin 30^{\circ} = 19.6 = 20 \text{ N} \checkmark$$

c The rate of change of the angular momentum is the net torque. ✓
And this is $JR = 19.6 \times 0.20 = 3.92 = 4.0 \text{ Nm} .\checkmark$
3 a i When the ring makes contact with the disc and while it is sliding, it exerts a frictional force on the disc but
the disc exerts equal and opposite force on the ring. ✓
Hence the net torque is zero and hence angular momentum is conserved. ✓
ii The initial angular momentum of the disc is $L = I\omega = \frac{1}{2}MR^2\omega = \frac{1}{2} \times 4.00 \times 0.300^2 \times 42.0 = 7.56 \text{ Js} .\checkmark$
After the ring lands the total angular momentum is $L = \frac{1}{2} \times 4.00 \times 0.300^2 \times \omega + 2.00 \times 0.300^2 \times \omega .\checkmark$
Hence $\frac{1}{2} \times 4.00 \times 0.300^2 \times \omega + 2.00 \times 0.300^2 \times \omega = 7.56 \text{ Js}$ which gives $\omega = 21 \text{ rad s}^{-1} .\checkmark$
iii The initial kinetic energy is $E_{\rm K} = \frac{1}{2}I\omega^2 = \frac{1}{2} \times (\frac{1}{2} \times 4.00 \times 0.300^2) \times 42.0^2 = 158.76 \text{ J}.\checkmark$
The final is $E_{\rm K} = \frac{1}{2} \times (\frac{1}{2} \times 4.00 \times 0.300^2) \times 21.0^2 = 158.76 \text{ J}.\checkmark$
iii $\omega = \frac{4}{\Delta u} = \frac{21.0}{3.00} = 7.00 \text{ rad s}^{-2} \checkmark$
iii $\omega = \frac{4}{\Delta t} = \frac{21.0}{3.00} = 7.00 \text{ rad s}^{-2} \checkmark$
iii $\omega = \frac{4}{\Delta t} = \frac{21.0}{3.00} = 7.00 \text{ rad s}^{-2} \checkmark$
iii $\Gamma = \frac{4L}{\Delta t} \checkmark$
Which is $\frac{31.5}{2\pi} = 5.0 \text{ revolutions}.\checkmark$
iv It is equal and opposite to that on the ring. ✓
Because the force on the ring is equal and opposite to that on the disc. ✓
c The change in the kinetic energy of the ring is $\frac{1}{2} \times (2.00 \times 0.300^2) \times 21.0^2 = 39.69 \text{ J}.\checkmark$

And so the power developed is $\frac{39.69}{3.00} = 13.2 \text{ W} \cdot \checkmark$

(This can also be done through $P = \Gamma \overline{\omega} = 1.26 \times \frac{21.0}{2} = 13.2 \text{ W}$.)

4 a i The temperature at B doubled at constant volume so the pressure also doubles at p_B = 4.00×10⁵ Pa . ✓
ii From pV^{5/5} = c and pV = nRT we find p^{-3/5}T^{5/5} = c' . ✓

Hence $(4.00 \times 10^5)^{-\frac{3}{3}} \times (600)^{\frac{5}{3}} = (2.00 \times 10^5)^{-\frac{3}{3}} \times T_C^{\frac{5}{3}}$ leading to $T_C = 455$ K. \checkmark **iii** The volume at B is $V_B = \frac{nRT_B}{p_B} = \frac{1.00 \times 8.31 \times 300}{2.00 \times 10^5} = 1.246 \times 10^{-2} \approx 1.25 \times 10^{-2} \text{ m}^3$. \checkmark And so $\frac{V_B}{T_B} = \frac{V_C}{T_C} \Rightarrow V_C = V_B \frac{T_C}{T_B} = 1.246 \times 10^{-2} \times \frac{455}{300} = 1.890 \times 10^{-2} \approx 1.89 \times 10^{-2} \text{ m}^3$. \checkmark

- **b i** $\Delta U_{AB} = \frac{3}{2} Rn\Delta T = +\frac{3}{2} \times 8.31 \times 1.00 \times 300 \checkmark$
 - $\Delta U_{\rm AB} = +3739 \approx +3.74 \times 10^3 \,\,\mathrm{J}\,\checkmark$
 - ii This happens from C to A: $W = -p\Delta V = 2.00 \times 10^5 \times (1.25 1.89) \times 10^{-2} = -1280$ J and the change in

internal energy is
$$\Delta U_{AB} = \frac{3}{2} Rn\Delta T = \frac{3}{2} \times 8.31 \times 1.00 \times (300 - 455) = -1932 \text{ J}.\checkmark$$

Hence $Q = \Delta U + W = -1932 - 1280 = -3212 \approx -3.21 \times 10^3$ J.

c Any heat engine working in a cycle cannot transform all the heat into mechanical work. ✓ And this engine rejects heat into the surroundings as it should. ✓

5 a i A curve along which no heat is exchanged. \checkmark

ii An adiabatic expansion involves a piston moving outwards fast. ✓
 Hence molecules bounce back from the piston with a reduced speed and hence lower temperature. ✓

b The product pressure × volume is constant for an isothermal. ✓
 This is the case for points A and C (product is 100 J). ✓
 And the same is true for any other point on the curve, for example at p = 2.00×10⁵ Pa, V = 0.50×10⁻³ m³. ✓

c i
$$\frac{V_{\text{A}}}{T_{\text{A}}} = \frac{V_{\text{B}}}{T_{\text{B}}} \Rightarrow T_{\text{B}} = T_{\text{A}} \frac{V_{\text{B}}}{V_{\text{A}}} \checkmark$$

 $T_{\text{B}} = 300 \times \frac{0.38}{0.20} = 570 \text{ K} \checkmark$

At C $T_{\rm C}$ = 300 K since AC is isothermal. \checkmark

ii Using data at A: $n = \frac{pV}{RT} = \frac{5.00 \times 10^5 \times 0.20 \times 10^{-3}}{8.31 \times 300} \checkmark$

$$n = 4.01 \times 10^{-2}$$

- **d** i Energy is transferred out of the gas along C to A. \checkmark From $Q = \Delta U + W$ and $\Delta U = 0$ we find Q = -160 J. \checkmark
 - ii This happens from A to B: $W = 5.00 \times 10^5 \times (0.38 0.20) \times 10^{-3} = 90$ J and

$$\Delta U = \frac{3}{2} \times 8.31 \times 4.01 \times 10^{-2} \times (570 - 300) = 135 \text{ J.}\checkmark$$

And so Q = 135 + 90 = 225 J. \checkmark

iii $W_{\rm BC} = -\Delta U_{\rm BC}$ (since BC is an adiabatic).

And $\Delta U_{\rm BC} = -\Delta U_{\rm AB} = -135$ (since AC is an isothermal). \checkmark OR

Since for the whole cycle $\Delta U = 0$, the net work is $Q_{in} - Q_{out} = 225 - 160 = 65 \text{ J}$.

And $W_{\text{net}} = W_{\text{AB}} + W_{\text{BC}} + W_{\text{CA}} \Rightarrow 128 = 90 + W_{\text{BC}} - 160 \Rightarrow W_{\text{BC}} = 198 \text{ J}.\checkmark$

iv The efficiency is $e = \frac{W_{\text{net}}}{Q_{\text{in}}} = \frac{65}{225} = 0.290$.

6 a For an adiabatic, $pV^{\frac{5}{3}} = c$ and since $V = \frac{nRT}{n}$.

we find
$$p\left(\frac{nRT}{p}\right)^{\frac{3}{5}} = c$$
.
Raising to the 3rd power gives $p^3\left(\frac{nRT}{p}\right)^5 = c^3$ and so the result.

b i From
$$\frac{T^3}{p^2} = \text{constant}$$
 we find $\frac{320^3}{(2.0 \times 10^5)^2} = \frac{T^3}{(2.0 \times 10^6)^2}$.

$$T = 320 \times \left(\frac{2.0 \times 10^6}{2.0 \times 10^5}\right)^{\frac{2}{5}} = 803.8 \approx 800 \text{ K} \checkmark$$

ii From $pV^{\frac{5}{3}} = \text{constant we find.} \checkmark$

$$V = \left(\frac{2.0 \times 10^5}{2.0 \times 10^6}\right)^{\frac{3}{5}} \times 0.40 = 0.10 \text{ m}^3 \checkmark$$

c The number of moles is $n = \frac{pV}{RT} = \frac{2.0 \times 10^5 \times 0.40}{8.31 \times 320} = 30.$

$$\Delta U = \frac{3}{2} Rn\Delta T = \frac{3}{2} \times 8.31 \times 30 \times (804 - 320) \checkmark$$

$$\Delta U = 0.181 \text{ MJ}$$

7 Delineate a rectangular region in the liquid whose top surface is the free surface of the liquid and has area A.

Equilibrium demands that weight = net upward force. \checkmark In other words that $\rho Ahg = pA - p_0A \cdot \checkmark$ From which the result follows.

- **b** i In free fall gravity "disappears" and so the pressure is just the atmospheric pressure. \checkmark
 - ii When the liquid accelerates upwards there is an additional force pushing the liquid upwards and so the pressure increases. ✓
- c A body immersed in a fluid experiences an upward force that is equal to the weight of the displaced liquid. \checkmark
- **d** i Equilibrium demands that $\rho_{\text{wood}}Vg = \rho_{\text{water}} \times 0.75Vg$.

Hence $\rho_{\text{wood}} = \rho_{\text{water}} \times 0.75 = 750 \text{ kg m}$.

ii Equilibrium demands that $\rho_{wood} Vg = \rho_{oil} \times 0.82 Vg$.

Hence
$$\rho_{\text{oil}} = \frac{\rho_{\text{wood}}}{0.82} = \frac{750}{0.82} = 914.6 \approx 910 \text{ kg m}$$
.

8 **a** i $p_0 + \rho g z = p_0 + \frac{1}{2} \rho v^2$ hence $v = \sqrt{2gz}$

$$v = \sqrt{2 \times 9.8 \times (220 + 40)} = 71.4 \approx 71 \text{ m s}^{-1}$$

- ii That the flow is laminar, ✓and there are no losses of energy. ✓
- **b** The flow rate is given by $Q = Av = \pi R^2 v \cdot \checkmark$

Hence $Q = \pi \times (0.25)^2 \times 71.4 = 14 \text{ m}^3 \text{s}^{-1} \checkmark$

- **c** i $p = p_0 + \rho gh = 1.0 \times 10^5 + 1000 \times 9.8 \times 40 \checkmark$ $p = 4.9 \times 10^5$ Pa \checkmark
 - ii The pressure is given by $p_0 + \rho gz = p + \frac{1}{2}\rho v^2$ where the speed can be found from the flow rate (i.e. the continuity equation) $\pi \times (0.65)^2 \times v = 14.02 \approx 14 \text{ m}^3 \text{s}^{-1}$.

i.e, $v = 10.56 \approx 11 \text{ ms}^{-1}$.

And hence

$$p = p_0 + \rho g z - \frac{1}{2} \rho v^2 = 1.0 \times 10^5 + 1000 \times 9.8 \times 40 - \frac{1}{2} \times 1000 \times 10.56^2 = 4.36 \times 10^5 \approx 4.4 \times 10^5 \text{ Pa} \checkmark$$

d The speed at depth h is $v = \sqrt{2gh}$.

The flow rate is $Q = A\nu = \pi R^2 \sqrt{2gh}$ and has to equal 0.40 m³s⁻¹.

Hence
$$h = \frac{1}{2g} \left(\frac{0.40}{\pi R^2} \right)^2 = \frac{1}{2 \times 9.8} \left(\frac{0.40}{\pi \times 0.03^2} \right)^2 = 7.2 \text{ m.}$$

- 9 a The left side is connected to the holes in the tube past which the air moves fast. ✓ Hence the pressure there is low and the liquid is higher. ✓
 - **b** Call the pressure at the top of the left column P_L and that on the right P_R . Then

$$p_{\rm L} + \rho_{\rm air} gz + \frac{1}{2} \rho v_{\rm L}^2 = p_{\rm R} + \rho_{\rm air} gz + \frac{1}{2} \rho v_{\rm R}^2 \text{ and with } v_{\rm L} = 0; v_{\rm R} = v, \checkmark$$

it becomes $v = \sqrt{\frac{2(p_{\rm L} - p_{\rm R})}{\rho_{\rm air}}} \cdot \checkmark$

But $p_{\rm L} - p_{\rm R} = \rho g h$ which gives the result.

c
$$v = \sqrt{\frac{2\rho gh}{\rho_{air}}} = \sqrt{\frac{2 \times 920 \times 9.8 \times 0.25}{1.20}}$$
.

10 a Smooth streamlines. ✓

Closer together above the aerofoil. \checkmark

b i From
$$p_{\rm L} + \rho g z + \frac{1}{2} \rho v_{\rm L}^2 = p_{\rm U} + \rho g z + \frac{1}{2} \rho v_{\rm U}^2$$
 we obtain $\Delta p = p_{\rm L} - p_{\rm U} = \frac{1}{2} \rho v_{\rm U}^2 - \frac{1}{2} \rho v_{\rm L}^2$.
Hence $F = A \Delta p = A(\frac{1}{2} \rho v_{\rm U}^2 - \frac{1}{2} \rho v_{\rm L}^2) = 8.0 \times \frac{1}{2} \times 1.20 \times (85^2 - 58^2) = 18.53 \approx 19 \text{ kN}$.

ii That the area above and below the foil are equal/that the flow is laminar. \checkmark

- c The net upward force on the foil is about 16 kN and this is an estimate of the downward force on the fuselage. ✓ Ignoring effects of torque. ✓
- **d** i The streamlines are no longer smooth but become eddy like and chaotic. \checkmark
- ii Everywhere on the top side of the aerofoil and especially to the right. ✓iii It will be drastically reduced. ✓
- a In undamped oscillations the energy is constant and so the amplitude stays the same. ✓
 In damped oscillations energy is dissipated and the amplitude keeps getting smaller. ✓
 - **b i** 8.0 s ✓
 - ii Correct readings of amplitudes. ✓

$$Q = 2\pi \frac{26^2}{26^2 - 22^2} \checkmark$$

 $Q\approx 22\,\checkmark$

- c i Amplitude reducing more every cycle. ✓
 Period staying essentially unchanged/very slightly increases. ✓
 - ii It will decrease. \checkmark

d
$$Q = 2\pi \frac{5.0}{5.0 - 4.6} \checkmark$$

 $Q \approx 79 \checkmark$

12 a All oscillating systems have their own natural frequency of oscillation. \checkmark

When a periodic external force is applied to the system the amplitude of oscillation will depnd on the relation of the external frequency to the natural frequency. \checkmark

The amplitude will be large when the frequency of the external force is the same as the natural frequency in which case we have resonance external. \checkmark

b Wider and lower curve. ✓
With peak shifted slightly to the right. ✓
See curve in blue.

c i Same intersection point. ✓
 Less steep. ✓
 See curve in blue.

