BADDEST CLASS ON CAMPUS

CITADEED OFFICE DEVIEW	
CHAPTER & TEST REVIEW	MARKSCHEME

3

2

3

1

3

3

1.	A	4.	D	7.	A	10.	A and C	13.	C
2.	A	5.	C	8.	D	11.	D	14.	C
3	D	6	D	Q	R	12	D	15	R

16. (a) (i) fuel enrichment means that the amount of uranium-235 present in the fuel is increased / *OWTTE*;

this means that more U-235 available for fission;

therefore the reaction can be sustained;

(ii) enriched fuel can be used in the manufacture of nuclear weapons; so possibly threatening World peace;

(b) (i) (energy released) = $2.1895 \times 10^5 - (1.3408 + 0.83749 + 0.0093956) \times 10^5$; = $181.44 \approx 180 \text{ MeV}$

(ii) kinetic; 1

(c) (i) number of atoms in 1 kg of carbon =
$$\frac{N_A \times 1000}{12}$$
 and number in 1 kg

of U-235 =
$$\frac{N_A \times 1000}{235}$$
;

energy per kg carbon = $\frac{4N_A}{12}$ keV and per kg

U-235 =
$$\frac{1.8 \times 10^8 N_A}{235}$$
 keV;

therefore, ratio = 2.3×10^6 ;

(ii) a much higher energy density implies that uranium will produce more energy per kg / smaller quantity of uranium needed to produce same amount of energy / *OWTTE*;

(d) (i) no of atoms = $\left(\frac{6.0 \times 10^{26}}{90}\right) = 6.7 \times 10^{24}$;

$$\lambda = \frac{0.69}{9.1 \times 10^8} = 7.6 \times 10^{-10} (s^{-1});$$

activity = $7.6 \times 10^{-10} \times 6.7 \times 10^{24}$; = 5.1×10^{15} Bq

(ii) $\lambda = 0.024 \text{ yr}^{-1}$;

activity = $5.1 \times 10^{15} \times e^{-0.024 \times 70}$; = 9.6×10^{14} Bq;

(e) initial activity is very high;

it is still highly radioactive after 70 years;

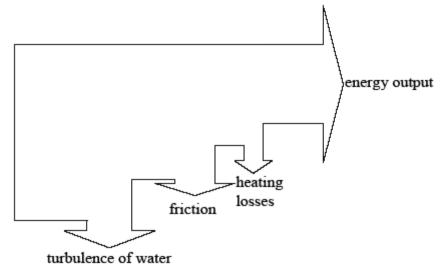
thereby posing a severe health risk / causing problems of disposal / OWTTE;

17.	(a)	equil	orce acting/accelerating (on the body) is directed towards ibrium (position); s proportional to its/the bodies displacement from equilibrium;	2
	(b)	(i)	10	1
		(ii)	$T = 1.1 \times 10^{-12} \mathrm{s};$	
			$f = \left(\frac{1}{1.1 \times 10^{-12}}\right);$	
			$=9.1 \times 10^{13} \text{ Hz}$	2
		(iii)	$\omega = (2\pi f) = 5.7 \times 10^{14} \text{ (rad s}^{-1});$	
			$E_{\text{max}} = \left(\frac{1}{2} m\omega^2 x_0^2\right) = \frac{1}{2} \times 1.7 \times 10^{-27} \times (1.5)^2 \times 10^{-20} \times (5.7)^2 \times 10^{28};$	
			$=6.2\times10^{-18}\mathrm{J}$	2
	(c)	(i)	$k = (4\pi^2 f^2 m_p) = 40 \times 83 \times 10^{26} \times 1.7 \times 10^{-27};$	
			$\approx 560 \text{ N m}^{-1}$	1
		(ii)	use of $F = kx$ and $F = ma$;	
			to give $a = \frac{560 \times 1.5 \times 10^{-10}}{1.7 \times 10^{-27}} = 5.0 \times 10^{19} \text{ m s}^{-2}$;	2
	(d)	(i)	infra red radiation radiated <u>from Earth</u> will be absorbed by greenhouse gases;	
			and so increase the temperature of the atmosphere/Earth;	2
		(ii)	the natural frequency of oscillation (of a methane molecule) is equal to 9.1×10^{13} Hz;	
			because of resonance the molecule will readily absorb radiation of this frequency;	2
18.	(a)	(i)	mass = $50 \times 5.0 \times 10^4 \times 10^3$;	
			loss in gpe = $50 \times 5.0 \times 10^4 \times 10^3 \times 310 \times 9.81$; Accept use of 335 m (including centre of mass of tank water) accept $g = 10$.	

(a) (i) mass = 50 × 5.0 × 10⁴ × 10³;
loss in gpe = 50 × 5.0 × 10⁴ × 10³ × 310 × 9.81;
Accept use of 335 m (including centre of mass of tank water accept g = 10.

7.6 × 10¹² (J);
≈ 8 × 10¹² (J)
Do not penalize if the first marking point is incorporated into the second marking point.
(ii) flows for 6250 s;

(11) Hows for 6250 s; 1.2×10^9 W or 1.3×10^9 W; Accept solution from (a)(i) or from flow rate.


(b) (i) 53%;

(ii) losses in correct order and approximately correct ratio of size; arrows correctly labelled with source of loss; 2

Labelling of width in % is acceptable for correct ratio only.

3

1

(diagram not to scale)

3

- (c) (i) emf is proportional to rate of change of flux (linkage); position 2 XY is moving perpendicular to field lines/ position 1 is moving parallel to field lines; rate of change is flux is greatest in position 2 / rate of change is less in position 1 than position 2; Accept argument in terms of force on electrons.
 - (ii) $\varepsilon = 0.015 \times 1.5 \times 160;$ 3.6 V;
 - (iii) recognizes that coil has two sides; 11 kV; Award [1 max] for 5.4 kV (only one side considered).
- (d) (i) transmit at high/increased potential difference/voltage; use (step-up) transformer to (increase potential difference/voltage and) reduce current; lower current means I^2R /resistive losses reduced; large cable cross-section/good conductor used for cables so resistive losses reduced; 3 max Do not accept discussion of reduction of station distance from consumer.
 - (ii) advantage: pumped storage on demand;
 disadvantage: but needs to be re-stored before re-use;
 Answer must focus on comparison between tidal and pumped storage.
 Do not accept arguments based on unreliability of tide or installation costs
- (e) (i) total volume of ice = $14 \times 10^{12} \times 1.5 \times 10^3 \text{ m}^3$; mass = $2.1 \times 10^{16} \times 920 = 1.9 \times 10^{19} \text{ kg}$;
 - (ii) new volume $1.9 \times 10^{16} \text{ m}^3$; level change = $\frac{\text{new volume}}{\text{area of ocean}}$; 51 m;

19. (a) (i) infrared; 1 (ii) nitrogen dioxide in the atmosphere will readily absorb infrared radiation radiated from the surface of Earth / OWTTE; and re-radiate the energy in random directions (so preventing the energy radiated from Earth escaping into space); 2 (b) emissivity: the ratio of energy/power emitted (per unit area) of a body; to the energy/power emitted (per unit area) of a black body of the same dimensions at the same temperature; ratio of power emitted by a body; to the power emitted if it were a black body; the fraction of energy/power incident in a surface that is reflected / OWTTE; 3 Allow answers that define in terms of the albedo of Earth. power per unit area = $e\sigma T^4$; (c) $= 0.720 \times 5.67 \times 10^{-8} \times 242^{4}$: $= 140 \text{ W m}^{-2}$ 2 (ii) = 0.720×344 ; $= 248 \text{ W m}^{-2}$ 1 new power radiated by atmosphere = $[0.720 \times 5.67 \times 10^{-8} \times 248^4]$ (d) $= 154 \text{ W m}^{-2}$: 1 (ii) new power absorbed by Earth = $(154 + 248) = 402 \text{ W m}^{-2}$; 1 $402 = 5.67 \times 10^{-8} \times T^4$; (e) T = 290K: to give $\Delta T = 2K$; 3 20. energy emitted per unit time / power per unit area; proportional to [absolute temperature/temperature in K]⁴; 2 Must define symbols if used. power = $5.67 \times 10^{-8} \times 4\pi \times [7.0 \times 10^{8}]^{2} \times 5800^{4}$: (b) $= 4.0 \times 10^{26} \text{ W}$ 1 $\frac{\text{incident energy}}{\text{area}} = \frac{3.97 \times 10^{26}}{4\pi [1.5 \times 10^{11}]^2};$ (ii) $= 1400 \text{ W m}^{-2}$: 2 (iii) max 2 of: (albedo of Earth means) some radiation is reflected; Earth's surface is not always normal to incident radiation; some energy lost as radiation travels to Earth; 2 max power absorbed = power radiated; uses $5.67 \times 10^{-8} \times 255^4$ = to yield answer close to 240 / evaluates $\sqrt[4]{\frac{240}{\sigma}}$; 2 (c) radiation from the Sun is re-emitted at longer wavelengths; (longer radiation) wavelengths are absorbed by greenhouse gases; some radiation re-emitted back to Earth; 3 more CO₂/named greenhouse gas released into atmosphere; (d) enhanced greenhouse effect; because more re-radiation of energy towards surface; 3