DEVIL PHYSICS BADDEST CLASS ON CAMPUS

CHAPTER 5 TEST REVIEW MARKSCHEME			
1.	D	6. B 11. C	16. A
2.	D	7. C 12. C	17. D
3.	С	8. D 13. A	18. B
4.	А	9. B 14. D	19. D
5.	А	10. C 15. B	
20.	(a)	 the work done per unit charge in moving a quantity of charge completely around a circuit / the power delivered per unit current / work done per unit charge made available by a source; 	1
		(ii) the ratio of the voltage (across) to the current in the conductor;	1
	(b)	(i) $\operatorname{emf} \times \operatorname{current};$	1
		(ii) total power is $V_1I + V_2I$; equating with <i>EI</i> to get result; <i>or</i> total energy delivered by battery is <i>EQ</i> ;	
		equate with energy in each resistor $V_1Q + V_2Q$;	2
	(c)	graph X: horizontal straight line; graph Y: starts lower than graph X; rises (as straight line or curve) and intersects at 4.0 V;	3
		$R/\Omega = 6^{+}$	
		4-	
		3-	
		2-	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Do not pay attention to numbers on the vertical axis.	
	(d)	(i) realization that the voltage must be 4.0 V across each resistor; and so emf is 8.0 V;	2
		 (ii) power in each resistor = 3.2 W; and so total power is 6.4 W; or 	

or current is 0.80 A; so total power is $8.0 \times 0.80 = 6.4$ W;

2

(c) 0.24 A;

(e)

(d) resistance calculated = $5.2(\Omega)$;

$$A = \left(\frac{\rho l}{R}\right) = 6.2 \times 10^{-8} \text{ m}^{2};$$

radius = $\sqrt{\frac{A}{\pi}}$ seen/used;
= 1.4×10^{-4} m;
calculates resistance of lamps in parallel (2.6 Ω);
 $V = \varepsilon - Ir$ used to give $V = 1.0$ V;

1

4

4

1

4

1.0 V is lower than 1.25 V / power available to each lamp is 192 mW lower than 300 mW: (terminal pd/power lower) hence not operating normally; Award [0] for only stating this bald answer. *Watch for ECF from (d).* Award [4 max] for any correct numerical argument involving energy or power calculations.

23. (a) there are no positions;

T 7

the lamp is effectively in series with 100 k Ω no matter what the position of S; this means that the pd across it will always be close to zero (very small) / never reach 6 V:

or

the resistance of the filament is much smaller than $100 \text{ k}\Omega$; so (nearly) all the potential of the battery appears across the variable resistance; 3 Award [0] for incorrect argument or just the answer without any explanation.

(b)
$$I = \frac{V}{R}$$
;
 $= \frac{12}{10^5} = 1.2 \times 10^{-4} \text{ A}$;
(c) correct position of ammeter;
correct position of voltmeter (either to the right
or left of the lamp);
Domestic shower
(a) (i) the amount of energy/heat required to raise the temperature of

24.

- (i) the amount of energy/heat required to raise the temperature of 1 kg of a substance through $1 \text{K} / 1^{\circ}\text{C}$; energy supplied by heater in $1s = 7.2 \times 10^3$ J; (ii)
 - energy per second = mass per second \times sp ht \times rise in temperature;

 $7.2 \times 10^3 = \text{mass per second} \times 4.2 \times 10^3 \times 26;$

- to give mass per second = 0.066 kg;
- (iii) energy is lost to the surroundings;
- flow rate is not uniform: 2 Do not allow "the heating element is not in contact with all the water flowing in the unit".

(iv)
$$P = VI \quad I = \frac{P}{V};$$

 $= \frac{7.2 \times 10^3}{240} = 30A;$ 2
(v) when operating at 7.2 kW the element is at a higher temperature/

 when operating at 7.2 kW the element is at a higher temperature/ hotter than when first switched on;
 therefore, resistance is greater (and so current is smaller) / OWTTE;
 or
 element is cold / OWTTE when first switched on;

therefore, smaller resistance than when hot (and so current is larger);

2

3

2

2

(b)
$$P = \frac{V^2}{R}$$
;
 $\frac{240^2}{R_{240}} = \frac{110^2}{R_{110}}$;
 $\frac{R_{110}}{R_{240}} = \left(\frac{110}{240}\right)^2$;
 $= 0.21$
or
from $P = VI$
 $240I_2 = 110I_1$ to give $I_2 = \frac{11}{24}I_1$;
 $I_2^2 R_2 = I_1^2 R_1$;
 $\frac{R_1}{R_2} = \frac{I_2^2}{I_1^2} = \left(\frac{11}{24}\right)^2$;
 $= 0.21$
25. (a) (i) $v = \sqrt{\frac{2eV}{m}}$;
 $v = \sqrt{\frac{2\times 1.6 \times 10^{-19} \times 250}{9.1 \times 10^{-31}}}$
 $= 9.4 \times 10^6 \text{ m s}^{-1}$
(ii) $evB = m\frac{v^2}{r}$;
 $r = \frac{9.1 \times 10^{-31} \times 9.4 \times 10^6}{1.6 \times 10^{-19} \times 0.12}$
 $= 4.5 \times 10^{-4} \text{ m}$

