CHAPTER 5 TEST REVIEW -- MARKSCHEME

1. D
2. D
3. C
4. A
5. A
6. B
7. C
8. D
9. B
10. C
11. C
12. C
13. A
14. D
15. B
16. (a) (i) the work done per unit charge in moving a quantity of charge completely around a circuit / the power delivered per unit current / work done per unit charge made available by a source;

1
(ii) the ratio of the voltage (across) to the current in the conductor;
(b) (i) emf \times current;
(ii) total power is $V_{1} I+V_{2} I$;
equating with $E I$ to get result;
or
total energy delivered by battery is $E Q$; equate with energy in each resistor $V_{1} Q+V_{2} Q$;
(c) graph X : horizontal straight line;
graph Y: starts lower than graph X;
rises (as straight line or curve) and intersects at 4.0 V ;

Do not pay attention to numbers on the vertical axis.
(d) (i) realization that the voltage must be 4.0 V across each resistor; and so emf is 8.0 V ;
(ii) power in each resistor $=3.2 \mathrm{~W}$;
and so total power is 6.4 W ;
or
current is 0.80 A ;
so total power is $8.0 \times 0.80=6.4 \mathrm{~W}$;
21. (a) use of $l=\frac{R A}{\rho}$; (allow if correct substitution seen - watch for use
of circumference in place of area)
$=\left(\frac{1.5 \times \pi \times[1.8]^{2} \times 10^{-8}}{1.7 \times 10^{-8}}=\right) 9.0 \mathrm{~m}$

Allow working using 0.82 A to show that power is 1.0086 W , in this case final answer must be to 2 sig fig or better.
(iii) total resistance $=[R+3.3]$;
$6.0=0.82[R+3.3]$;
to give $R=4.0 \Omega$; (allow use of 1.65Ω leading to 3.9Ω)
or
total resistance in circuit $=\frac{6.0}{0.82}=(7.3 \Omega)$;
internal resistance + fixed resistance $=3.3 \Omega$;
to give $R=4.0 \Omega$;
22. (a) any circuit in which the current will flow through the lamp;
variable resistor connected as a potential divider; voltmeter across lamp; ammeter in series with lamp;

(c) 0.24 A ;
(d) resistance calculated $=5.2(\Omega)$;
$\mathrm{A}=\left(\frac{\rho l}{R}\right)=6.2 \times 10^{-8} \mathrm{~m}^{2} ;$
radius $=\sqrt{\frac{A}{\pi}}$ seen/used;
$=1.4 \times 10^{-4} \mathrm{~m}$;
4
(e) calculates resistance of lamps in parallel (2.6 Ω);
$V=\varepsilon-I r$ used to give $V=1.0 \mathrm{~V}$;
1.0 V is lower than $1.25 \mathrm{~V} /$ power available to each lamp is 192 mW
lower than 300 mW ;
(terminal pd/power lower) hence not operating normally; Award [0] for only stating this bald answer.
Watch for ECF from (d).
Award [4 max] for any correct numerical argument involving
energy or power calculations.
23. (a) there are no positions;
the lamp is effectively in series with $100 \mathrm{k} \Omega$ no matter what the position of S ;
this means that the pd across it will always be close to zero (very small) / never reach 6 V ;
or
the resistance of the filament is much smaller than $100 \mathrm{k} \Omega$;
so (nearly) all the potential of the battery appears across the variable resistance; 3 Award [0] for incorrect argument or just the answer without any explanation.
(b) $I=\frac{V}{R}$;

$$
=\frac{12}{10^{5}}=1.2 \times 10^{-4} \mathrm{~A} ;
$$

(c)
correct position of ammeter;
correct position of voltmeter (either to the right or left of the lamp);

24. Domestic shower
(a) (i) the amount of energy/heat required to raise the temperature of 1 kg of a substance through $1 \mathrm{~K} / 1^{\circ} \mathrm{C}$;
(ii) energy supplied by heater in $1 \mathrm{~s}=7.2 \times 10^{3} \mathrm{~J}$;
energy per second $=$ mass per second \times sp ht \times rise in temperature;
$7.2 \times 10^{3}=$ mass per second $\times 4.2 \times 10^{3} \times 26$;
to give mass per second $=0.066 \mathrm{~kg}$;
4
(iii) energy is lost to the surroundings;
flow rate is not uniform;
2
Do not allow "the heating element is not in contact with all the water flowing in the unit".
(iv) $\quad P=V I \quad I=\frac{P}{V} ;$

$$
=\frac{7.2 \times 10^{3}}{240}=30 \mathrm{~A}
$$

(b) $\quad P=\frac{V^{2}}{R}$;

$$
\begin{aligned}
& \frac{240^{2}}{R_{240}}=\frac{110^{2}}{R_{110}} ; \\
& \frac{R_{110}}{R_{240}}=\left(\frac{110}{240}\right)^{2} ; \\
& =0.21
\end{aligned}
$$

or
from $P=V I$
$240 I_{2}=110 I_{1}$ to give $I_{2}=\frac{11}{24} I_{1} ;$
$I_{2}{ }^{2} R_{2}=I_{1}{ }^{2} R_{1} ;$
$\frac{R_{1}}{R_{2}}=\frac{I_{2}{ }^{2}}{I_{1}{ }^{2}}=\left(\frac{11}{24}\right)^{2} ;$
$=0.21$
25. (a)
(i) $v=\sqrt{\frac{2 e V}{m}}$;
$v=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 250}{9.1 \times 10^{-31}}}$
$=9.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $e v B=m \frac{v^{2}}{r}$;
$r=\frac{9.1 \times 10^{-31} \times 9.4 \times 10^{6}}{1.6 \times 10^{-19} \times 0.12}$
$=4.5 \times 10^{-4} \mathrm{~m}$

2
(b) (i) vector as shown; 1

(iii) $F\left(=\frac{\Delta p}{\Delta t}=\frac{1.2 \times 10^{-23}}{7.5 \times 10^{-11}}\right)=16 \times 10^{-13} \mathrm{~N}$;

1

