DEVIL PHYSICS

BADDEST CLASS ON CAMPUS

	CHAPTER 4 TEST REVIEW MARKSCHEME							
1. 2.	C B	6. B 7. A	11. C 16. C 12. C 17. C					
3.	А	8. B	13. C 18. A					
4.	С	9. B	14. C					
5.	А	10. A	15. C					
19.	(a)	1. acceleration proportional to displa centre (of motion) /mean position;	cement from equilibrium/					
		2. acceleration directed to equilibrium	m/centre/mean position; 2					
	(b)	(i) $\frac{d}{2}$;	1					
		(ii) sine/cosine curve shape reasonable Do not allow semi-circle for half s	e; 1 sine curve.					
		(iii) period labelled; amplitude labelled;	2					
	(c)	(i) $v = a2\pi f \text{ seen/used};$ 3.3 m s ⁻¹ ;	2					
		(ii) acceleration = $a4\pi^2 f^2$ seen/used; 9.2 × 10 ³ m s ⁻² ;	2					
	(d)	cosine with the same period; negative cosine; Accept any amplitude.						
velocity time								
		Amplitudes need not be the same.						
	(e)	(i) (a situation in which) a (resistive) the amplitude decays with time;	force opposes the motion / 1					
		(ii) energy lost to surroundings / air re \acting on the fork;	esistance / frictional force is 1					
20.	(a)	(i) one A correctly shown;(ii) one V correctly shown;	displacement A					
	(b)	pendulum bob accelerates towards centre of circular path / <i>OWTTE;</i> therefore force upwards; that <u>adds</u> to tension produced by the weight;	$0 \xrightarrow{V} V \xrightarrow{V} \text{time}$					
Chapte	er 4 Tes	Review Markscheme.Docx						

	(c)	(i) evidence shown of equating kinetic energy and gravitational potential energy;			
			$v = \sqrt{(2 \times 9.8 \times 0.025)};$		
			$= 0.70 \text{ m s}^{-1}$	2	
			Allow $g = 10 \text{ m s}^{-2}$ answer 0.71 m s ⁻² .		
		(ii)	centripetal acceleration $\left(=\frac{v^2}{r}\right) = \frac{0.7^2}{0.8} = 0.61 \text{ (m s}^{-2})$		
		net acceleration = $(9.81 + 0.61 =) 10.4 \text{ (m s}^{-2})$ or $T - mg = m \times 0.613$ tension= $(ma =) 0.59 \text{ N};$ Allow $g = 10 \text{ m s}^{-2}$ answer 0.60 N.		2	
				3	
	(1)				
	(u)	(1)			
			f		
			one maximum shown and curve broadly similar to example above; amplitude falls on each side as shown:	2	
		(ii)	resonance is where driving frequency equals/close to natural	2	
		(11)	frequency; the frequency at the maximum amplitude of the graph;	2	
	(e)	lower	r amplitude everywhere on graph;		
		with a	a much broader resonance peak;	2 max	
		Awar	<i>cd</i> [2] for a sketch graph.	2 max	
21.	(a)	stand	ling wave formed;		
	. ,	by superposition/interference of (forward) wave and reflected wave; maximum where interference is constructive / minimum where interference is destructive;			
		maxii minir	ma where waves in phase; ma where waves are <u>completely/180°/π/half wavelength</u> out of phase;	4 max	
	(b)	(i)	130 mm = 9 half wavelengths; 29 mm;	2	
		(;;)	c_{-}	-	
		(11)	$\int -\lambda$		
			= 10 GHz;	2	
	(c)	place electr	a metal grid/analyser between source and detector; ric field vector (of the microwaves) vibrates in only one tion/plane:		
		rotate	e the metal grid/detector;		
		until	minimum signal is detected;	3 max	
		or			
		electr	ric field vector vibrates in only one direction/plane;		
		rotate	e transmitter through an angle;		
		need	to rotate receiver through same angle to restore signal in transmitter;		

22.			
	I		
	<i>I</i> ₀ -	P U	
	Ó	90 180 θ / deg	
	(a)	horizontal line; (<i>labelled U</i>) through half the incident intensity;	2
	(b)	curve starting at I_0 ; (<i>labelled P</i>) with minima and maxima as shown;	2
23.	(a)	light in which the electric field is oscillating on only one plane;	1
	(b)	 (i) refracted ray shown <u>at right angles</u> to reflected ray; Judge by eye. 	1
		(ii) $\sin \varphi = n \sin(90^{\circ} - \varphi);$ $\sin \varphi = n \cos \varphi;$	
		$n = \tan \varphi$; (this marking point must be justified)	3
~ 4		(iii) $\varphi = 52^{\circ} or \ 0.92 \text{ rad};$	1
24.	(a)	where the direction of polarization is random;	1
	(b)	$0.50 \text{ W m}^{-2};$	
		$(I \propto \cos^2 \theta)$ average value is $\frac{1}{2}$	2
	(c)	polarizer and analyser separated by sugar solution; <i>Accept a diagram for this marking point.</i> measure angle / rotation of plane of polarization;	
		concentration proportional to angle;	2 max