CHAPTER 4 TEST REVIEW -- MARKSCHEME

1. C
2. B
3. A
4. C
5. A
6. B
7. A
8. B
9. B
10. A
11. C
12. C
13. C
14. C
15. C
16. C
17. C
18. A
19. (a) 1. acceleration proportional to displacement from equilibrium/ centre (of motion) /mean position;
20. acceleration directed to equilibrium/centre/mean position;
(b) (i) $\frac{d}{2}$;
(ii) sine/cosine curve shape reasonable;

Do not allow semi-circle for half sine curve.
(iii) period labelled;
amplitude labelled;
(c) (i) $v=a 2 \pi f$ seen/used;
$3.3 \mathrm{~m} \mathrm{~s}^{-1}$;
(ii) acceleration $=a 4 \pi^{2} f^{2}$ seen/used;
$9.2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-2}$;
(d) cosine with the same period;
negative cosine;
Accept any amplitude.
velocity

Amplitudes need not be the same.
(e) (i) (a situation in which) a (resistive) force opposes the motion / the amplitude decays with time;

1
(ii) energy lost to surroundings / air resistance / frictional force is lacting on the fork;

1
20. (a) (i) one A correctly shown;
(ii) one V correctly shown;
(b) pendulum bob accelerates towards centre of circular path / OWTTE; therefore force upwards; that adds to tension produced by the weight;

(c) (i) evidence shown of equating kinetic energy and gravitational
potential energy;
$v=\sqrt{(2 \times 9.8 \times 0.025)}$;
$=0.70 \mathrm{~m} \mathrm{~s}^{-1}$
Allow $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ answer $0.71 \mathrm{~m} \mathrm{~s}^{-2}$.
(ii)
centripetal acceleration $\left(=\frac{v^{2}}{r}\right)\left[=\frac{0.7^{2}}{0.8}\right]=0.61\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
net acceleration $=(9.81+0.61=) 10.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ or $T-m g=m \times 0.61$;
tension $=(m a=) 0.59 \mathrm{~N}$;
Allow $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ answer 0.60 N .
(d) (i)

one maximum shown and curve broadly similar to example above; amplitude falls on each side as shown;
(ii) resonance is where driving frequency equals/close to natural frequency; the frequency at the maximum amplitude of the graph;
(e) lower amplitude everywhere on graph;
with a much broader resonance peak; maximum moves to left on graph;
Award [2] for a sketch graph.
21. (a) standing wave formed;
by superposition/interference of (forward) wave and reflected wave;
maximum where interference is constructive / minimum where
interference is destructive;
maxima where waves in phase;
minima where waves are completely $/ \underline{180^{\circ}} / \pi /$ half wavelength out of phase; 4 max
(b) (i) $130 \mathrm{~mm}=9$ half wavelengths;

29 mm ;
(ii) $f=\frac{c}{\lambda}$;
$=10 \mathrm{GHz}$;
(c) place a metal grid/analyser between source and detector; electric field vector (of the microwaves) vibrates in only one
direction/plane;
rotate the metal grid/detector;
until minimum signal is detected;
or
electric field vector vibrates in only one direction/plane;
rotate transmitter through an angle;
need to rotate receiver through same angle to restore signal in transmitter;
22.

(a) horizontal line; (labelled U)
through half the incident intensity;
(b) curve starting at I_{0}; (labelled P)
with minima and maxima as shown;
23. (a) light in which the electric field is oscillating on only one plane;
(b) (i) refracted ray shown at right angles to reflected ray;

Judge by eye.
(ii) $\sin \varphi=n \sin \left(90^{\circ}-\varphi\right)$;
$\sin \varphi=n \cos \varphi ;$
$n=\tan \varphi ;$ (this marking point must be justified)
(iii) $\varphi=52^{\circ}$ or 0.92 rad ;
24. (a) all possible polarization directions are equally represented / where the direction of polarization is random;
(b) $0.50 \mathrm{~W} \mathrm{~m}^{-2}$;
$\left(I \propto \cos ^{2} \theta\right)$ average value is $\frac{1}{2}$
(c) polarizer and analyser separated by sugar solution; Accept a diagram for this marking point.
measure angle / rotation of plane of polarization; concentration proportional to angle;

