DEVIL PHYSICS BADDEST CLASS ON CAMPUS

	CHAPTER 3 TEST REVIEW MARKSCHEME							
1.	С		5. A	9.	С			
2.	С		6. C	10.	С			
3.	D		7. D	11.	А			
4.	В		8. B	12.	D			
13.	(a)	in bo	iling, energy is required to break bonds (in vaporization) and					
		in me	to separate molecules; in melting, (more) energy available to overcome bond energies of molecules without large separation;					
		of m						
	(b)	(i)	evaporation at surface of liquid, boiling occurs throughout liquid;					
			evaporation occurs at all temperatures, boiling at boiling pt only;					
			evaporation: vapour pressure < atmospheric;	2	max			
		(ii)	attempt to equate energy gained by milk to energy lost by steam;					
			minimum energy required = $0.30 \times 3800 \times 62 = (70680 \text{ J});$					
			energy supplied = [steam mass] \times [2.3 \times 10 [°] + 4200 \times 20]; minimum steam mass = 0.030kg:		4			
		(iii)	energy required to heat cup;		·			
		. ,	energy lost to surroundings / steam escapes from system;		2			
14.	(a)	(i)	internal energy:					
			molecules/ atoms/particles;					
			or					
			amount of stored energy in the copper;					
			heating:					
			the (non-mechanical) transfer of energy; (from the surroundings/source) to the copper:		3			
			(nom the surroundings/source) to the copper, ΔQ		5			
		(ii)	$c = \frac{\Delta Q}{m\Delta T};$					
			$\begin{bmatrix} 1.2 \times 10^3 \end{bmatrix}$ 240 J1 -1 K ⁻¹		2			
			$= \left[\frac{0.25 \times 20}{0.25 \times 20}\right] = 240 \text{ J kg}^{-1} \text{ K}^{-1};$		2			
	(b)	(i)	$Q = \Delta U + W$					
			Q = +623;					
			W = +249; $\Delta I = [623 - 249] = 374 I:$		3			
			0		5			
		(ii)	$C = \frac{z}{\Delta T};$					
			$= 20.8 \text{ J K}^{-1};$		2			
	(c)	less;						
		because (at constant volume) all the thermal energy supplied goes to increasing the internal energy:						
		and s	so the increase in temperature in the constant volume case is greater;		3			

15. (a) energy (released) per unit mass; Accept per unit volume or per kg or per m^3 . Do not accept per unit density.

(b)	(i) volume of fuel used per second = $\frac{\text{rate}}{\text{density}} (= 1.63 \times 10^{-7} \text{ (m}^3));$			
	energy per second = $2.7 \times 10^{10} \times 1.63 \times 10^{-7}$; = (4.3875 =)4.4kW;	3		
	(ii) power required = $(2.9 \times 10^5 \times 0.13 \times 10^{-3} =)38W$; small fraction/less than 1 % of overall power output / <i>OWTTE</i> ;	2		
(c)	sensible comment comparing molecular structure; e.g. liquid molecular structure (more) ordered than that of a gas. in gas molecules far apart/about 10 molecular spacings apart / in liquid molecules close/touching			
	sensible comment comparing motion of molecules;e.g. in liquid:molecules interchange places with neighbouring molecules / no long distance motion.in gases:no long-range order / long distance motion.	2		
(a)	(i) use of $R = \frac{pV}{nT}$; (award mark if correct substitution seen)			
	$\left(\frac{5.2 \times 10^{-3} \times 1.0 \times 10^{5}}{0.23 \times 290}\right) = 7.8 \text{ J K mol}^{-1}; (accept Pa m^{3} mol \text{K}^{-1})$	2		
	(ii) the gas is ideal;	1		
(b)	constant temperature required; (<i>do not allow "isothermal"</i>) a slow compression allows time for (internal) energy to leave gas / <i>OWTTE</i> ;	2		
(c)	(for adiabatic change) $Q = 0$; <i>W</i> is positive / work is done by the gas;			
	$\Delta U = -W$ so ΔU is negative; (<i>T</i> is a measure of <i>U</i> therefore) <i>T</i> less than 290 K.	4		

16.