CHAPTER 2 TEST REVIEW -- MARKSCHEME

1. D
2. B
3. B
4. D
5. C
6. C
7. C
8. B
9. A
10. B
11. C
12. D
13. B
14. C
15. B
16. D
17. C
18. A
19. B
20. C
21. (a) $11 \mathrm{~m} \mathrm{~s}^{-2}$;

1
(b) $\Delta v=236$;
$a=\left(\frac{236}{8}=\right) 29.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$;
$\left(F=1.1 \times 10^{4} \times 29.5\right)=3.2 \times 10^{5} \mathrm{~N}$;
Award [2 max] for omission of initial speed (answer is 390 kN).
(c) phase 1 distance $88 \mathrm{~m} /$ phase 2 distance 1296 m ;
total 1400 m ;
Watch for significant figure penalty in this question (1384 m).
Award [1 max] for $\frac{1}{2}$ at ${ }^{2}$ substituted correctly for first phase, if
no distances evaluated and answer incorrect.
Award [1 max] for correct addition of incorrect phase 1 and/or 2 distance(s).
22. (a) attempt to equate gpe and ke;
$v=\sqrt{9.8 \times 6.0 \times 2}$;
$11 \mathrm{~m} \mathrm{~s}^{-1}$
Award [0] for use of $v^{2}=2$ as. Allow use of $g=10 \mathrm{Nkg}^{1}$
(b) $F=\frac{m \Delta v}{\Delta t}$;

40 N ;
(c) (i) ball accelerates towards centre of circular path / OWTTE; therefore force towards centre / upwards; that adds to tension;
(ii) $F=\left(\frac{m v^{2}}{r}=\frac{0.55 \times 11^{2}}{7.5}=\right) 8.9 \mathrm{~N}$;
weight $=(m g=0.55 \times 0.98)=5.4 \mathrm{~N}$;
total $=14 \mathrm{~N}$;
Allow use of $g=10 \mathrm{Nkg}^{-1}$.
23. Mechanical power
(a) the rate of working / work \div time;

1
If equation is given, then symbols must be defined.
(b) $P=\frac{W}{t}=\frac{F \times d}{t}$;
$v=\frac{d}{t}$ therefore, $P=F v$;
(iii) work done against friction $=4.8 \times 10^{3} \times 5.0 \times 10^{2}$;
total work done $=2.4 \times 10^{6}+3.6 \times 10^{6}$;
total work done $=P \times t=6.0 \times 10^{6}$;
to give $P=\frac{6.0 \times 10^{6}}{300}=20 \mathrm{~kW}$;
(i) $\sin \theta=\frac{0.30}{6.4}=0.047$;
weight down the plane $=W \sin \theta=1.2 \times 10^{4} \times 0.047=5.6 \times 10^{2} \mathrm{~N}$;
net force on car $F=5.6 \times 10^{2}-5.0 \times 10^{2}=60 \mathrm{~N}$;
$a=\frac{F}{m}$;
$\frac{60}{1.2 \times 10^{3}}=5.0 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2}$;
(ii) $v^{2}=2 a s=2 \times 5.0 \times 10^{-2} \times 6.4 \times 10^{3}$;
to give $v=25 \mathrm{~m} \mathrm{~s}^{-1}$;
(e) $5.6 \times 10^{2} \mathrm{~N}$;
24. (a) equation is for constant acceleration;
force varies and so acceleration changes;
(b) (i) average force $=2100 \mathrm{~N}$;
acceleration $=\left(\frac{2100}{0.0320}=\right)=6.6 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-2}$
(ii) uses area under the line;

1 square is equivalent to 0.125 Ns ;
area is $68 \rightarrow 72$ squares;
(to give momentum change $8.5 \rightarrow 9.0 \mathrm{Ns}$)
(c) (i) use of $\Delta p=m \Delta v$;
$v=\left(\frac{8.8}{0.032}=\right) 280 \mathrm{~m} \mathrm{~s}^{-1} ;$
Allow value for momentum change from (b)(ii).
(ii) use of power $=\frac{\text { change in kinetic energy }}{\text { time taken }}$;
change in kinetic energy $=\frac{1}{2} \times 0.032 \times 280^{2} ;$

$$
\left(\frac{1300}{5 \times 10^{-3}}\right)=\text { power }=0.26 \mathrm{MW}
$$

or
use of $E=\frac{p^{2}}{2 m}$;
$\frac{8.8^{2}}{2 \times 0.032}$;
power $=0.24 \mathrm{MW}$;
Award [0] for solution from $P=F v$.
(d) N3 states that action and reaction are equal and opposite; so force on gun and force on bullet are action and reaction pair; so force on gun is opposite direction to bullet/backwards;

