DEVIL PHYSICS BADDEST CLASS ON CAMPUS

		CHAPTER 2 TEST REVIEW MARKSCHEME	
1. 2. 3. 4.	D B B D	5. C 9. A 13. B 6. C 10. B 14. C 7. C 11. C 15. B 8. B 12. D 16. D	17. C 18. A 19. B 20. C
21.	(a) (b)	11 m s ⁻² ; $\Delta v = 236;$ $a = \left(\frac{236}{8}\right) = 29.5 (\text{m s}^{-2});$ $(F = 1.1 \times 10^4 \times 29.5) = 3.2 \times 10^5 \text{N};$ 3	
	(c)	Award [2 max] for omission of initial speed (answer is 390 kN).phase 1 distance 88 m / phase 2 distance 1296 m;total 1400 m;Watch for significant figure penalty in this question (1384 m).Award [1 max] for $\frac{1}{2}at^2$ substituted correctly for first phase, if	
22.	(a)	no distances evaluated and answer incorrect. Award [1 max] for correct addition of incorrect phase 1 and/or 2 distance(s). attempt to equate gpe and ke; $v = \sqrt{9.8 \times 6.0 \times 2}$; 2 11 m s ⁻¹ Award [0] for use of $v^2 = 2as$. Allow use of $g = 10 N kg^1$	
	(b)	$F = \frac{m\Delta v}{\Delta t};$	
	(c)	 40 N; (i) ball accelerates towards centre of circular path / OWTTE; therefore force towards centre / upwards; that adds to tension; 	
		(ii) $F = \left(\frac{mv^2}{r} = \frac{0.55 \times 11^2}{7.5} =\right) 8.9 \text{ N};$	
		weight = $(mg = 0.55 \times 0.98) = 5.4$ N; total = 14N; Allow use of $g = 10 N kg^{-1}$.	
23.	Mech	chanical power	
	(a)	the rate of working / work ÷ time;1If equation is given, then symbols must be defined.	

(b)
$$P = \frac{W}{t} = \frac{F \times d}{t}$$
;
 $v = \frac{d}{t}$ therefore, $P = Fv$; 2
(c) (i) $t = \frac{d}{v}$;
 $= \frac{4800}{16} = 300 \text{ s}$; 2
(ii) $W = mgh = 1.2 \times 10^4 \times 300 = 3.6 \times 10^6 \text{ J}$; 1
(iii) work done against friction = $4.8 \times 10^3 \times 5.0 \times 10^2$;
total work done = $2.4 \times 10^6 + 3.6 \times 10^6$;
total work done = $2.4 \times 10^6 + 3.6 \times 10^6$;
total work done = $P \times t = 6.0 \times 10^6$;
to give $P = \frac{6.0 \times 10^6}{300} = 20 \text{ kW}$; 4
(d) (i) $\sin \theta = \frac{0.3}{6.4} = 0.047$;
weight down the plane = $W \sin \theta = 1.2 \times 10^4 \times 0.047 = 5.6 \times 10^2 \text{ N}$;
net force on car $F = 5.6 \times 10^2 - 5.0 \times 10^2 = 60 \text{ N}$;
 $a = \frac{F}{m}$;
 $\frac{60}{1.2 \times 10^3} = 5.0 \times 10^{-2} \text{ m s}^{-2}$; 5
(ii) $v^2 = 2as = 2 \times 5.0 \times 10^{-2} \times 6.4 \times 10^3$;
to give $v = 25 \text{ m s}^{-1}$; 2
(e) $5.6 \times 10^2 \text{ N}$; 1
(a) equation is for constant acceleration;
force varies and so acceleration changes; 2
(b) (i) average force = 2100 \text{ N};
acceleration = $\left(\frac{2100}{0.0320} = \right) = 6.6 \times 10^4 \text{ m s}^{-2}$ 2
(ii) uses area under the line;
1 square is equivalent to 0.125Ns;
area is 68 > 72 squares;
(to give momentum change 8.5 $\rightarrow 9.0 \text{ Ns}$) 3
(c) (i) use of $\Delta p = m\Delta v$;
 $v = \left(\frac{8.8}{0.32} = \right) 280 \text{ m s}^{-1}$; 2
Allow value for momentum change from (b)(ii).

24.

(ii) use of power =
$$\frac{\text{change in kinetic energy}}{\text{time taken}}$$
;
change in kinetic energy = $\frac{1}{2} \times 0.032 \times 280^2$;
 $\left(\frac{1300}{5 \times 10^{-3}}\right) = \text{power} = 0.26 \text{ MW}$;
or
use of $E = \frac{p^2}{2m}$;
 $\frac{8.8^2}{2 \times 0.032}$;
power = 0.24 MW;
Award [0] for solution from $P = Fv$.
N3 states that action and reaction are equal and opposite;

(d) so force on gun and force on bullet are action and reaction pair; so force on gun is opposite direction to bullet/backwards;

1

3