AP PHYSICS Name:		DEVIL PHYSICS BADDEST CLASS ON CAMPUS		
		CHAPTER TEST		
50 Multiple Choice • 45 Single Response • 5 Multi-Response	90 min, 1 point each	25 Multiple Choice • 22 Single Response • 3 Multi-Response	45 min	
Free Response • 3 Short Free Response • 2 Long Free Response	90 min • 13 min ea, 7 pts ea • 25 min ea, 12 pts ea	Free Response • 2 Short Free Response • 1 Long Free Response	45 min • 12 min ea, 7 pts ea • 20 min ea, 12 pts ea	

CHAPTER 1 TEST REVIEW

MULTIPLE CHOICE

1. (__/1) Four students measure the mass of an object, each using a different scale. They record their results as follows:

Student	А	В	С	D
Mass (g)	27.2	27.21	30	27

Which student used the least precise scale?

- a. A
- b. B
- c. C
- d. D
- e. E
- 2. (__/1) All of the following are base units of the SI system EXCEPT:
 - a. Kilogram
 - b. Kelvin
 - c. Meter
 - d. Volt
 - e. Candela
- 3. (__/1) How many basic units does the SI system have?
 - a. Three
 - b. Four
 - c. Five
 - d. Seven
 - e. Ten

- 4. $(_/1)$ The metric prefix for one thousand is
 - a. Milli
 - b. Centi
 - c. Mega
 - d. Kilo
 - e. Micro
- 5. (__/1) Express the number 0.02 days using a metric prefix.
 - a. 2 decidays
 - b. 2 centidays
 - c. 2 hectodays
 - d. 2 millidays
 - e. 2 microdays
- 6. (__/1) What is the conversion factor between km/hr^2 and m/s^2 ?
 - a. $7.72 \times 10^{-6} \text{ m/s}^2$
 - b. $2.78 \times 10^{-1} \text{ m/s}^2$
 - c. $1.30 \times 10^4 \text{ m/s}^2$
 - d. 3.60 m/s^2
 - e. $1.30 \times 10^{-4} \text{ m/s}^2$
- 7. (__/1) The position *x*, of an object is given by the equation $x = A + Bt + Ct^2$ where *t* refers to time. What are the dimensions of A, B, and C?
 - a. Distance, distance, distance
 - b. Distance, time, time²
 - c. Distance, distance/time, distance/time²
 - d. distance/time, distance/time², distance/time³

8. (__/1) What is the percent uncertainty in the measurement 7.63 ± 0.13 cm

- a. 0.017%
- b. 1.7%
- c. 0.99%
- d. 99%
- e. 59%
- 9. (__/1) What is the volume, and its approximate uncertainty, of a sphere of radius 5.46 \pm 0.03m?
 - a. $375 \pm 0.09 \text{ m}$
 - b. $384 \pm 0.27 \text{ m}$
 - c. $70.2 \pm 0.55 \text{ m}$
 - d. 125 ± 1.6 m
 - e. $682 \pm 10 \text{ m}^3$
- 10. (/1) The number of significant figures in 0.040 is
 - a. One
 - b. Two
 - c. Three
 - d. Four
- 11. (__/1) Use the rules for significant figures to find the difference between 117.3 and 108.57.
 - a. 9
 - b. 8.7
 - c. 8.73
 - d. 8.730
 - e. 8.7300
- 12. (__/1) Use the rules for significant figures to find the area of a rectangle that is 3.25m long and 1.5m wide.
 - a. 4.875 m^2
 - b. 4.87 m^2
 - c. 4.80 m^2
 - d. 4.9 m²
 - e. 5 m²
- 13. (__/1) Use the rules for significant figures to find the diagonal of a garden measuring 15 m by 13.7 m.
 - a. 5.4 m
 - b. 19 m
 - c. 20 m
 - d. 29 m

- 14. (__/1) Write the number 4567.89 in proper scientific notation.
 - a. 456789 x 10⁻²
 - b. 4.56789 x 10⁻³
 - c. $4.56789 \ge 10^3$
 - d. 4568
 - e. $4567.89 \ge 10^{\circ}$
- 15. (/1) 0.00001942 can also be expressed as,
 - a. 1.942 x 10⁻⁵
 - b. 19.42×10^4
 - c. 1.942 x 10⁻⁴
 - d. 1942 x 10⁸
 - e. 1.9 x 10⁻⁵
- 16. (__/1) A measurement of 0.00045 meters can be expressed by what number of centimeters? Use the rules for proper scientific notation and significant figures.
 - a. $4.5 \times 10^{-2} \text{ cm}$
 - b. $4.50 \times 10^{-2} \text{ cm}$
 - c. 4.50 x 10⁻⁴ cm
 - d. $4.50 \times 10^4 \text{ cm}$
 - e. 0.0450 cm
- 17. (__/1) How would you write the number 6.937 x 10^{-7} in decimal form?
 - a. 0.0006937
 - b. 0.00006937
 - c. 0.000006937
 - d. 0.000006937
 - e. 0.0000006937
- 18. (__/1) A hot air balloon rises to an altitude of 600 fathoms. What is this height in feet? (1 fathom = 6 feet)
 - a. 100 ft
 - b. 600 ft
 - c. 1200 ft
 - d. 3600 ft
 - e. Cannot be determined from the information given

- 19. (__/1) Given the mass of an electron, how many electrons would it take to make 2.5 kg of electrons
 - a. 2.7×10^{30}
 - b. 2.7 x 10⁻³⁰
 - c. 2.3×10^{-30}
 - d. 3.6×10^{-30}
 - e. 3.6×10^{30}
- 20. (__/1) How many m/s is 50 mi/h equivalent to? (1 mi = 1609 m).
 - a. 0.045 m/s
 - b. 2.2 m/s
 - c. 22 m/s
 - d. 45 m/s
 - e. 49 m/s
- 21. (__/1) A football field is 120 yd long (counting the endzones) and 50 yd wide. What is the area of the football field in m^2 ? (1 yd = 91.44 cm).
 - a. $7.2 \times 10^{-1} \text{ m}^2$
 - b. 4.2×10^3
 - c. 5.0×10^3
 - d. 4.2×10^7
 - e. $5.0 \ge 10^7$

- 22. (_/1) A thick-walled metal pipe of length 20.0 cm has an inside diameter of 2.00 cm and an outside diameter 2.40 cm. What is the total surface area (inside and out) in m^2 if we neglect the ends?
 - a. 276 m^2
 - b. 553 m^2
 - c. 138 m^2
 - d. 0.0276 m^2
 - e. 0.0552 m^2
- 23. (__/1) Concrete is sold by the cubic yard. 5.00 cubic yards of concrete would equal how many cubic meters? (1m = 1.094 yds)
 - a. 0.239 m^3
 - b. 0.262 m^3
 - c. 3.82 m^3
 - d. 4.18 m^3
 - e. 4.57 m^3
- 24. (__/1) An average human heart has a heart rate of 70 beats per minute. Using that average how many times has a teenager's heart beaten over 17 years?
 - a. 8.9×10^{6} b. 1.0×10^{7} c. 3.7×10^{7} d. 6.3×10^{8} e. 3.7×10^{10}

FREE RESPONSE

- 25. The radius of the earth is 3963 mi. (1mi = 1609m)
 - a. (__/2) If you jogged at a 10 min/mi pace, how many days would it take to jog around the world?

b. $(_/2)$ What is the surface area of the earth in m²?

c. (__/3) If the density of the earth is approximately 5.513 g/cm³, what is the weight of the earth in pounds? (1kg \approx 2.2 lbs)

- 26. The mass of Mars (1.41×10^{23} lbs) is about one-tenth that of the Earth, and its radius is about half that of the Earth's. ($1 \text{kg} \approx 2.2$ lbs)
 - a. (__/5) What is the mean density $\left(\rho = \frac{mass}{volume}\right)$ of Mars in kg/m³?

b. (__/5) How does the mean density of Mars compare to the mean density of the Earth?

27. (__/4) Explain how random and systematic error affected your Ball Bounce lab.

28. (__/4) Determine and justify a propagated uncertainty for your 'bounce constant'.

Chapter 1 Test Review 2015-2016.Docx