AP PHYSICS		
Name:		
Period:	_ Date:	
Points: 53	Score:	IB Curve:

AP EXAM		CHAPTER TEST	
50 Multiple Choice - 45 Single Response - 5 Multi-Response	90 min, 1 point each	25 Multiple Choice - 22 Single Response - 3 Multi-Response	45 min
Free Response - 3 Short Free Response - 2 Long Free Response	90 min - 13 min ea, 7 pts ea - 25 min ea, 12 pts ea	Free Response - 2 Short Free Response - 1 Long Free Response	45 min - 12 min ea, 7 pts ea - 20 min ea, 12 pts ea

CHAPTER 1 TEST REVIEW

MULTIPLE CHOICE

1. (__/1) Four students measure the mass of an object, each using a different scale. They record their results as follows:

Student	A	B	C	D
Mass (g)	27.2	27.21	30	27

Which student used the least precise scale?
a. A
b. B
c. C
d. D
e. E
2. (__/1) All of the following are base units of the SI system EXCEPT:
a. Kilogram
b. Kelvin
c. Meter
d. Volt
e. Candela
3. (__/1) How many basic units does the SI system have?
a. Three
b. Four
c. Five
d. Seven
e. Ten
4. (__/1) The metric prefix for one thousand is
a. Milli
b. Centi
c. Mega
d. Kilo
e. Micro
5. (__/1) Express the number 0.02 days using a metric prefix.
a. 2 decidays
b. 2 centidays
c. 2 hectodays
d. 2 millidays
e. 2 microdays
6. (__/1) What is the conversion factor between $\mathrm{km} / \mathrm{hr}^{2}$ and $\mathrm{m} / \mathrm{s}^{2}$?
a. $7.72 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
b. $2.78 \times 10^{-1} \mathrm{~m} / \mathrm{s}^{2}$
c. $1.30 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$
d. $3.60 \mathrm{~m} / \mathrm{s}^{2}$
e. $\quad 1.30 \times 10^{-4} \mathrm{~m} / \mathrm{s}^{2}$
7. (__/1) The position x, of an object is given by the equation $x=A+B t+C t^{2}$ where t refers to time. What are the dimensions of A, B, and C?
a. Distance, distance, distance
b. Distance, time, time 2
c. Distance, distance/time, distance/time ${ }^{2}$
d. distance/time, distance/time ${ }^{2}$, distance/time ${ }^{3}$
8. (__/1) What is the percent uncertainty in the measurement $7.63 \pm 0.13 \mathrm{~cm}$
a. 0.017%
b. 1.7%
c. 0.99%
d. 99%
e. 59%
9. (__/1) What is the volume, and its approximate uncertainty, of a sphere of radius $5.46 \pm$ 0.03 m ?
a. $\quad 375 \pm 0.09 \mathrm{~m}$
b. $384 \pm 0.27 \mathrm{~m}$
c. $70.2 \pm 0.55 \mathrm{~m}$
d. $125 \pm 1.6 \mathrm{~m}$
e. $682 \pm 10 \mathrm{~m}^{3}$
10. (__/1) The number of significant figures in 0.040 is
a. One
b. Two
c. Three
d. Four
11. (__/1) Use the rules for significant figures to find the difference between 117.3 and 108.57.
a. 9
b. 8.7
c. 8.73
d. 8.730
e. 8.7300
12. (__/1) Use the rules for significant figures to find the area of a rectangle that is 3.25 m long and 1.5 m wide.
a. $4.875 \mathrm{~m}^{2}$
b. $4.87 \mathrm{~m}^{2}$
c. $4.80 \mathrm{~m}^{2}$
d. $4.9 \mathrm{~m}^{2}$
e. $5 \mathrm{~m}^{2}$
13. (__/1) Use the rules for significant figures to find the diagonal of a garden measuring 15 m by 13.7 m .
a. 5.4 m
b. 19 m
c. 20 m
d. 29 m
14. (__/1) Write the number 4567.89 in proper scientific notation.
a. 456789×10^{-2}
b. 4.56789×10^{-3}
c. 4.56789×10^{3}
d. 4568
e. 4567.89×10^{0}
15. (__/1) 0.00001942 can also be expressed as,
a. $\quad 1.942 \times 10^{-5}$
b. $\quad 19.42 \times 10^{4}$
c. 1.942×10^{-4}
d. 1942×10^{8}
e. 1.9×10^{-5}
16. (__ 11) A measurement of 0.00045 meters can be expressed by what number of centimeters? Use the rules for proper scientific notation and significant figures.
a. $4.5 \times 10^{-2} \mathrm{~cm}$
b. $4.50 \times 10^{-2} \mathrm{~cm}$
c. $4.50 \times 10^{-4} \mathrm{~cm}$
d. $4.50 \times 10^{4} \mathrm{~cm}$
e. 0.0450 cm
17. (__/1) How would you write the number 6.937 x 10^{-7} in decimal form?
a. 0.0006937
b. 0.00006937
c. 0.000006937
d. 0.0000006937
e. 0.00000006937
18. (__/1) A hot air balloon rises to an altitude of 600 fathoms. What is this height in feet? (1 fathom $=6$ feet)
a. 100 ft
b. 600 ft
c. 1200 ft
d. 3600 ft
e. Cannot be determined from the information given
19. (__/1) Given the mass of an electron, how many electrons would it take to make 2.5 kg of electrons
a. 2.7×10^{30}
b. 2.7×10^{-30}
c. 2.3×10^{-30}
d. 3.6×10^{-30}
e. 3.6×10^{30}
20. (__/1) How many m / s is $50 \mathrm{mi} / \mathrm{h}$ equivalent to? $(1 \mathrm{mi}=1609 \mathrm{~m})$.
a. $\quad 0.045 \mathrm{~m} / \mathrm{s}$
b. $2.2 \mathrm{~m} / \mathrm{s}$
c. $22 \mathrm{~m} / \mathrm{s}$
d. $45 \mathrm{~m} / \mathrm{s}$
e. $49 \mathrm{~m} / \mathrm{s}$
21. (__ 1) A football field is 120 yd long (counting the endzones) and 50 yd wide. What is the area of the football field in m^{2} ? $(1 \mathrm{yd}=91.44 \mathrm{~cm})$.
a. $7.2 \times 10^{-1} \mathrm{~m}^{2}$
b. 4.2×10^{3}
c. 5.0×10^{3}
d. 4.2×10^{7}
e. 5.0×10^{7}
22. (__/1) A thick-walled metal pipe of length 20.0 cm has an inside diameter of 2.00 cm and an outside diameter 2.40 cm . What is the total surface area (inside and out) in m^{2} if we neglect the ends?
a. $276 \mathrm{~m}^{2}$
b. $553 \mathrm{~m}^{2}$
c. $138 \mathrm{~m}^{2}$
d. $0.0276 \mathrm{~m}^{2}$
e. $0.0552 \mathrm{~m}^{2}$
23. (__/1) Concrete is sold by the cubic yard. 5.00 cubic yards of concrete would equal how many cubic meters? $(1 \mathrm{~m}=1.094 \mathrm{yds})$
a. $0.239 \mathrm{~m}^{3}$
b. $0.262 \mathrm{~m}^{3}$
c. $3.82 \mathrm{~m}^{3}$
d. $4.18 \mathrm{~m}^{3}$
e. $4.57 \mathrm{~m}^{3}$
24. (_/1) An average human heart has a heart rate of 70 beats per minute. Using that average how many times has a teenager's heart beaten over 17 years?
a. 8.9×10^{6}
b. 1.0×10^{7}
c. 3.7×10^{7}
d. 6.3×10^{8}
e. 3.7×10^{10}

FREE RESPONSE

25. The radius of the earth is $3963 \mathrm{mi} .(1 \mathrm{mi}=1609 \mathrm{~m})$
a. (__/2) If you jogged at a $10 \mathrm{~min} / \mathrm{mi}$ pace, how many days would it take to jog around the world?
\qquad
\qquad
\qquad
b. (__/2) What is the surface area of the earth in m^{2} ?
\qquad
\qquad
\qquad
\qquad
c. (__ 3) If the density of the earth is approximately $5.513 \mathrm{~g} / \mathrm{cm}^{3}$, what is the weight of the earth in pounds? $(1 \mathrm{~kg} \approx 2.2 \mathrm{lbs})$
26. The mass of Mars $\left(1.41 \times 10^{23} \mathrm{lbs}\right)$ is about one-tenth that of the Earth, and its radius is about half that of the Earth's. ($1 \mathrm{~kg} \approx 2.2 \mathrm{lbs}$)
a. (__/5) What is the mean density $\left(\rho=\frac{\text { mass }}{\text { volume }}\right)$ of Mars in $\mathrm{kg} / \mathrm{m}^{3}$?
\qquad
\qquad
\qquad
\qquad
b. (__/5) How does the mean density of Mars compare to the mean density of the Earth?
\qquad
\qquad
\qquad
\qquad
27. (__/4) Explain how random and systematic error affected your Ball Bounce lab.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28. (_14) Determine and justify a propagated uncertainty for your 'bounce constant'.
29. (__/4) What is Physics?
