DEVIL PHYSICS BADDEST CLASS ON CAMPUS

			CHAF	PTER 12 1	EST REVI	EW		MARKSCHI	EME	
1.	D		(6. C		11.	С		16.	A
2.	А			7. A		12.	В	l	17.	В
3.	А		8	8. C		13.	D		1	
4.	D		ļ	9. A		14.	С		1	
5.	А		Ĺ	10. B		15.	С	l	1	
18.	using	3 conse	ervation of en	nergy, Initial E	$E_{\rm K} = E_{\rm P};$					
	$E_{\rm K} =$	5.0 M	$eV = 5.0 \times 1.0$	$6 \times 10^{-13} = 8.5$	$0 \times 10^{-13} \mathrm{J};$					
	$E_P =$	<u>k.2e.'</u>	$\frac{79e}{};$							
	(d	29. 2 70 5	1 6 10 - 19 - 2						
	d =	9.0×1($\frac{\mathbf{U} \times 2 \times 79 \times [1]}{2.0 \times 10^{-1}}$	$\frac{1.0 \times 10^{-17}}{13}$	$= 4.6 \times 10^{-14}$	m;			4	
	Acces	nt and	o.U×10	thing any of the	le above stors					
19.	പറ്റം പ്രി	(i)	light consist	ts of nhotone	quanta.					
- /•	(u)	(*)	a certain mi	inimum amou	nt of energy (the	e work	func	tion)		
			is required t	to remove an	electron from th	ne meta	ıl;			
			11 the photo.	on energy is be s will be emitt	elow this energy	//work	tunct	1011		
			the energy of	of the photons	is proportional	to the	frequ	ency /		
			E = hf (with	h terms define	d);	1 ~	,		4	
			If work func	ction is mentic	oned it must be a	definea of	t to a	ward [4] .		
		(11)	for electrony	is to be remove	ed:	of min	umun	n energy	1	
			Accept answ	wers in terms	of work function	ı if defi	ined e	either	1	
			here or in (a	(a)(i).		-				
	(b)	(i)	$KE_{\max} = hf$	$\phi; \phi;$	- ···					
			$= 6.6 \times 10^{-1}$	$^{-54} \times 1.0 \times 10^{1}$	$^{3}-3.2\times10^{-19};$					
			$= 3.4 \times 10^{-1}$	- J			_		2	
		(ii)	use of $E = $	$\frac{p^2}{2m}$ and $p =$	$\frac{h}{\lambda}$ or use of v	$=\sqrt{\frac{21}{m}}$	E an 1	$\operatorname{id} p = mv = \frac{h}{\lambda};$		
			to give $\lambda =$	$\frac{h}{\sqrt{2mE}}$;						
			$\lambda = 8.4 \times 10$	0^{-10} m;					3	
20.	(a)	ejecti em ra	ion of electro adiation/photo	on from metal on;	surface followii	ng abso	orptio	n of	1	
	(b)	(i)	energy of or	ne photon = 6	$5.67 \times 10^{-34} \times 8.$	7×10	¹⁴ (= :	$5.8 \times 10^{19} \text{ J});$		
			number of e	electrons relea	used from surfac	e per s	econ	$d = \frac{9.0 \times 10^{-6} \times 1.}{5.8 \times 10^{-6}}$	$\frac{1 \times 10^{-3}}{19}$	$- = 1.7 \times 10^{10};$
			current $= 1$.	$.7 \times 10^{10} \times 1.6$	$5 \times 10^{-19};$					
			= 2.7 nA						3	

		(ii) 2.4 eV <i>or</i> 3.9×10^{-19} J;	1
21.	(a)	particles have an associated wavelength;	
		wavelength = $\frac{h}{mv}$ or $\frac{h}{p}$; (symbols must be defined)	2
	(b)	$\lambda = \frac{h}{\sqrt{2\text{meV}}}$ 8.3 × 10 ⁻¹³ m;	2
	(c)	(Heisenberg suggests that) $\Delta p \Delta x$ is a constant $or \geq \frac{h}{4\pi}$;	
		if λ is known then Δp is zero therefore uncertainty in position Δx is infinite/very large; Award [1 max] if Δp and Δx not defined.	2
		(the Uncertainty Principle states that) it is impossible to know the position and momentum of a particle at the same time; if λ is precise then momentum is precise so position is not known;	
22.	(a)	Look for these main points. light consists of <u>photons</u> whose energy depends on the frequency/ hf ; hence the energy available to the (photo)electrons will depend on f ; the potentials V_A and V_B correspond to/are a measure of the maximum kinetic of the emitted electrons; the work function (of metal)/energy to emit electron is same for both light sources; as electrons in A have more kinetic energy available, this frequency must be higher;	
		(so A)	4 max
	(b)	 (i) 1.6 eV; (answer must be expressed in eV) work function = (3.6 – 1.6 =) 2.0 eV; Allow answer in J if (b)(i) expressed in joule (ECF), otherwise award [1 max]. 	1
		(ii) energy of photons = $\left(\frac{6.6 \times 10^{-34} \times 8.8 \times 10^{14}}{1.6 \times 10^{-19}}\right) = 3.6 \text{ (eV)};$	
		work function = $(3.6 - 1.6 =) 2.0 \text{ eV}$; Allow answer in J if $(b)(i)$ expressed in joule (ECF), otherwise award [1 max] .	2
	(c)	photon energy increases (because frequency increases); so for same intensity fewer photons per second; so current reduced / fewer electrons emitted per second;	3
	(d)	all particles/electrons exhibit wave properties/have an associated wavelength (called the de Broglie wavelength); the wavelength is equal to the Planck constant divided by the <i>h</i> momentum of the particle/electron/ $\lambda = \frac{h}{-}$ with terms	
		defined: (terms must be defined for mark)	2
23.	(a)	a function whose (absolute squared) value may be used to calculate the probability of finding a particle near a given position / quantity related to the probability of finding an	2
		electron near a given position/at a given position;	1

- (b) middle of the box / (near) 0.5×10^{-10} m;
- (c) the de Broglie wavelength is 2.0×10^{-10} m;

$$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{2.2 \times 10^{-10}} = 3.3 \times 10^{-24} \text{ Ns};$$

1

(d) difference in energy is

$$\Delta E \left(= -\frac{2.18 \times 10^{-18}}{2^2} + \frac{2.18 \times 10^{-18}}{1^2} \right) = 1.635 \times 10^{-18} \text{ J};$$

$$\lambda = \frac{hc}{\Delta E};$$

$$\lambda = \left(\frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{1.635 \times 10^{-18}} \right) = 1.22 \times 10^{-7} \text{ m};$$

3

(e) (i) attempt at using the energy – time uncertainty relation;

$$\Delta E \left(= \frac{h}{4\pi\Delta t} = \frac{6.63 \times 10^{-34}}{4\pi \times 1.0 \times 10^{-10}} \right) = 5.3 \times 10^{-25} \,\mathrm{J};$$

(ii) the wavelength of the photons is determined by the difference in energy between the two levels;
and that energy difference is not well defined/definite/not always the same (because of the uncertainty principle);
energy levels all with strictly positive energy;

(f) energy levels all with strictly positive energy;
difference between levels increasing with increasing
$$n$$
; 2

Judge separation of levels by eye – there will not be numbers on the candidates' graphs.

(a) (i) probability that a nucleus decays in unit time; 1
(ii)
$$150 = 800e^{-1.2 \times 10^{-3}t}$$
;
1400 s; 2
(b) (i) 580 s; 1

24.

	activity/count rate measured at regular time intervals/for at least					
	three half-lives;					
	plot graph activity/count rate versus time;					
	detail of determination of half-life from graph;	3				
(c)	beta energy spectrum is continuous and associated gamma spectrum is discrete;					
	difference in energies accounted for by existence of another particle;	2				
	or					
	if another particle not present:					

then momentum not conserved in beta decay;