Page 1 of 4

DISPLACEMENT		
LINEAR	CIRCULAR	ROTATIONAL
 Straight-line distance from the start point to the end point d = x_f - x_i 	 Distance around the circle Often as a fraction of the circumference (C = 2πr) Can be found from the number of degree difference between the two positions If an object travels 12° around a circle with a circumference of 10 m, the arc length travelled is 12/360 x10 = 0.3m 	 Angular displacement based on number of radians 1 radian is equal to angle subtended by an arc length (<i>l</i>) equal to one radius (<i>r</i>) 1 revolution = 360° = 2π radians θ = l/r Relationship between angular displacement and linear displacement α = rθ θ = x/r

VELOCITY		
LINEAR	CIRCULAR	ROTATIONAL
 Defined as displacement per unit time v = d/t Base unit is m/s 	 Tangential velocity (v_{tan}) is the velocity of an object tangent to the circular path and perpendicular to the radius Equal to the circumference (C = 2πr) divided by the period (T, time to complete one revolution v = 2πr/T Base unit is m/s Also equal to the length of an arc segment (<i>I</i>) divided by the time it takes to travel that distance v = Δl/Δt 	 Angular velocity (ω) defined as the change in angular displacement (in radians) per unit time (rad/s) Sometimes referred to as angular frequency (revolutions in radians per unit time) ω = Δθ/Δt Angular velocity from period: Period is time per revolution o
	• Period (T) - time to complete one revolution • $T = \frac{time}{revolution}$ • Frequency (f) – number of revolutions per unit time • $f = \frac{revolutions}{time}$ • $f = \frac{1}{T}$ $T = \frac{1}{f}$	$\circ \frac{\text{revolution}}{\text{time}} x \frac{2\pi \text{radians}}{\text{revolution}} = \omega$ $\circ \omega = 2\pi f$ • Relationship between velocity and angular velocity $\circ v = r\omega$ $\circ \omega = \frac{v}{r}$

Page 2 of 4

ACCELERATION		
LINEAR	CIRCULAR	ROTATIONAL
• Defined as the change in velocity per unit time $\circ a = \frac{\Delta v}{\Delta t}$	 Tangential acceleration (a_{tan}) is just the change in the <i>magnitude</i> of the velocity of the object in its circular path (not used very often) a_{tan} = Δv_{tan}/Δt Centripetal or radial acceleration (a_c or a_R) is due to the change in <i>direction</i> of the object's velocity Always directed toward the center of the circular path a_c = v²/r You could have tangential and centripetal acceleration going on at the same time, but that's too complicated so we don't do it. 	 Average angular acceleration is defined as the change in angular velocity per unit time α = Δω/Δt If the acceleration is uniform, α = Δω/Δt Relationship between tangential acceleration (atan) and angular acceleration atan = rα Relationship between centripetal or radial acceleration (ac or aR) and angular acceleration α_{tan} = rα

KINEMATIC EQUATIONS		
* Both sets of equations are only valid for constant (uniform) acceleration.		
LINEAR	ROTATIONAL	
• $v = v_0 + at$	• $\omega = \omega_0 + \alpha t$	
• $v = v_0 + at$ • $x = v_0 t + 1/2 at^2$	• $\theta = \omega_0 t + 1/2 \alpha t^2$	
$\bullet v^2 = v_0^2 + 2ax$	• $\omega^2 = \omega_0^2 + 2\alpha\theta$	
• $v^2 = v_0^2 + 2ax$ • $\bar{v} = \frac{v + v_0}{2}$	• $\omega = \omega_0 + \alpha t$ • $\theta = \omega_0 t + 1/2 \alpha t^2$ • $\omega^2 = \omega_0^2 + 2\alpha \theta$ • $\overline{\omega} = \frac{\omega + \omega_0}{2}$	
Δ	2	

Page 3 of 4

NEWTON'S SECOND LAW		
LINEAR	CIRCULAR	ROTATIONAL
• $\Sigma F = ma$	• $\Sigma F = ma_c = m \frac{v^2}{r}$	• Torque • Defined as force times moment arm • Also called the moment of the force • Only applies to the component of the force perpendicular to the moment arm • $\tau = rF \perp = rF \sin \theta$ • Second Law to Rotation • $\Sigma F = ma = mr\alpha$ • $\Sigma Fr = mr^2 \alpha$ • $\Sigma \tau = (\Sigma mr^2) \alpha$ • Moment of Inertia (I) • Torque doesn't work for solid objects because they have mass at a continuous range of radii • Therefore we use moment of intertia to account for the mass and varying moment arms of the mass • $I = \Sigma mr^2$ • The above equation only works for one or more point masses in a system • For solid objects, it must be found using calculus, or (in our case) given • Rotational Equivalent of Newton's Second Law • $\Sigma \tau = I\alpha$

Page 4 of 4

KINETIC ENERGY * Laws of conservation of energy apply to all three situations.		
LINEAR	CIRCULAR	ROTATIONAL
• $KE = \frac{1}{2}mv^2$	• $KE = \frac{1}{2}mv^2$	• If an object is rotating in place (spinning) then it only has rotational kinetic energy $\circ KE = \frac{1}{2}I\omega^2$ • If an object has both rotational and translational motion (rolling), then it will have both rotational and translational kinetic energy $\circ KE = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$

MOMENTUM		
* Laws of conservation of momentum apply to all three situations.		
LINEAR	ROTATIONAL	
 Momentum (p) is defined as mass times velocity p = mv Momentum is conserved if the net force acting on the object is zero. If outside forces do act on the object, momentum changes. We can re-write the momentum equation in terms of force F = Δp/Δt Conservation of Momentum m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂' 	 In a manner similar to kinetic energy, angular momentum (L) is defined as the moment of inertia (I) instead of mass times the angular velocity (ω) L = Iω The total angular momentum of a rotating object remains constant if the net torque acting on it. If the net torque is not zero, there will be a change in rotational momentum. We can re-write the equation in terms of force, but just like in Newton's Second Law, we use torque (τ) instead of force T = ΔL/Δt Conservation of Momentum Iω = I'ω' 	