\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{DISPLACEMENT} \\
\hline LINEAR \& CIRCULAR \& ROTATIONAL \\
\hline \begin{tabular}{l}
- Straight-line distance from the start point to the end point \\
- \(d=x_{f}-x_{i}\)
\end{tabular} \& \begin{tabular}{l}
- Distance around the circle \\
- Often as a fraction of the circumference (\(C=2 \pi r\)) \\
- Can be found from the number of degree difference between the two positions \\
- If an object travels \(12^{\circ}\) around a circle with a circumference of 10 m , the arc length travelled is
\[
\frac{12}{360} \times 10=0.3 \mathrm{~m}
\]
\end{tabular} \& \begin{tabular}{l}
- Angular displacement based on number of radians \\
- 1 radian is equal to angle subtended by an arc length (\(/\)) equal to one radius (\(r\)) \\
- 1 revolution \(=360^{\circ}=2 \pi\) radians \\
- \(\theta=\frac{l}{r}\) \\
- Relationship between angular displacement and linear displacement
\[
\begin{array}{ll}
\circ \& x=r \theta \\
\circ \& \theta=\frac{x}{r}
\end{array}
\]

\end{tabular} \\

\hline
\end{tabular}

VELOCITY

LINEAR	
$\bullet \quad$ Defined as displacement per unit	
	time
\bullet	$v=\frac{d}{t}$
\bullet	Base unit is m / s

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ACCELERATION} \\
\hline LINEAR \& CIRCULAR \& ROTATIONAL \\
\hline - Defined as the change in velocity per unit time
\[
a=\frac{\Delta v}{\Delta t}
\] \& \begin{tabular}{l}
- Tangential acceleration \(\left(a_{\tan }\right)\) is just the change in the magnitude of the velocity of the object in its circular path (not used very often) \\
- \(\quad a_{t a n}=\frac{\Delta v_{t a n}}{\Delta t}\) \\
- Centripetal or radial acceleration (\(a_{c}\) or \(a_{R}\)) is due to the change in direction of the object's velocity - Always directed toward the center of the circular path \\
- \(a_{c}=\frac{v^{2}}{r}\) \\
- You could have tangential and centripetal acceleration going on at the same time, but that's too complicated so we don't do it.
\end{tabular} \& \begin{tabular}{l}
- Average angular acceleration is defined as the change in angular velocity per unit time \\
- \(\bar{\alpha}=\frac{\Delta \omega}{\Delta t}\) \\
- If the acceleration is uniform, - \(\alpha=\frac{\Delta \omega}{\Delta t}\) \\
- Relationship between tangential acceleration \(\left(a_{\tan }\right)\) and angular acceleration \\
- \(a_{\tan }=r \alpha\) \\
- Relationship between centripetal or radial acceleration (\(a_{c}\) or \(a_{R}\)) and angular acceleration

$$
a_{\mathrm{R}}=\mathrm{r} \omega^{2}
$$

\end{tabular}

\hline
\end{tabular}

KINEMATIC EQUATIONS

* Both sets of equations are only valid for constant (uniform) acceleration.

LINEAR	
$\bullet v=v_{0}+a t$	$\bullet \omega=\omega_{0}+\alpha t$
$\bullet x=v_{0} t+1 / 2 a t^{2}$	$\bullet \theta=\omega_{0} t+1 / 2 \alpha t^{2}$
$\bullet v^{2}=v_{0}^{2}+2 a x$	$\bullet \omega^{2}=\omega_{0}^{2}+2 \alpha \theta$
\bullet	$\bar{v}=\frac{v+v_{0}}{2}$
	$\bullet \bar{\omega}=\frac{\omega+\omega_{0}}{2}$

Motion Summary

NEWTON'S SECOND LAW		
LINEAR	CIRCULAR	ROTATIONAL
- $\Sigma F=m a$	- $\quad \Sigma F=m a_{c}=m \frac{v^{2}}{r}$	- Torque - Defined as force times moment arm - Also called the moment of the force - Only applies to the component of the force perpendicular to the moment arm - $\tau=r F \perp=r F \sin \theta$ - Second Law to Rotation $\Sigma F=m a=m r \alpha$ $\Sigma F r=m r^{2} \alpha$ - $\Sigma \tau=\left(\Sigma m r^{2}\right) \alpha$ - Moment of Inertia (I) - Torque doesn't work for solid objects because they have mass at a continuous range of radii - Therefore we use moment of intertia to account for the mass and varying moment arms of the mass - $I=\Sigma m r^{2}$ - The above equation only works for one or more point masses in a system - For solid objects, it must be found using calculus, or (in our case) given - Rotational Equivalent of Newton's Second Law - $\Sigma \tau=I \alpha$

KINETIC ENERGY

* Laws of conservation of energy apply to all three situations.

LINEAR	CIRCULAR	ROTATIONAL
- $K E=\frac{1}{2} m v^{2}$	- $K E=\frac{1}{2} m v^{2}$	- If an object is rotating in place (spinning) then it only has rotational kinetic energy - $K E=\frac{1}{2} I \omega^{2}$ - If an object has both rotational and translational motion (rolling), then it will have both rotational and translational kinetic energy - $K E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$

MOMENTUM

* Laws of conservation of momentum apply to all three situations.
LINEAR ROTATIONAL
- Momentum (p) is defined as mass times velocity
- $p=m v$
- Momentum is conserved if the net force acting on the object is zero.
- If outside forces do act on the object, momentum changes.
- We can re-write the momentum equation in terms of force
- $F=\frac{\Delta p}{\Delta t}$
- $\Delta p=F \Delta t$
- Conservation of Momentum
- $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime}$
- In a manner similar to kinetic energy, angular momentum (L) is defined as the moment of inertia (I) instead of mass times the angular velocity (ω)
- $L=I \omega$
- The total angular momentum of a rotating object remains constant if the net torque acting on it.
- If the net torque is not zero, there will be a change in rotational momentum.
- We can re-write the equation in terms of force, but just like in Newton's Second Law, we use torque (τ) instead of force
- $\tau=\frac{\Delta L}{\Delta t}$
- $\Delta L=\tau \Delta t$
- Conservation of Momentum
- $I \omega=I^{\prime} \omega^{\prime}$

