

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS APPHYSICS

LSN 10-1: PHASES OF MATTER LSN 10-2: DENSITY AND SPECIFIC GRAVITY

Introductory Video: Chemical Properties - Density

Objectives:

- Name the four states of matter.
- Describe the characteristics that differentiate the four states of matter.
- Define density.
- Solve problems involving density.
- Define specific gravity.
- Determine the specific gravity of a given substance.

Phases (States) of Matter:

- Solid
- Liquid
- Gas
- Plasma

What characteristics differentiate these four?

States of Matter

Glenn Research Center

Holds Shape Fixed Volume

Liquid

Shape of Container Free Surface Fixed Volume

Gas

Shape of Container Volume of Container

ADD HEAT

LiquidGas

What properties do they have in common?

Density (ρ)

Mass per unit volume

$$\rho = \frac{m}{V}$$

- A characteristic property of any pure substance
- SI unit is <u>kg/m³</u>
 - 1 kg/m³ = 1x10-³ g/cm³
 - 1x10³ kg/m³ = 1 g/cm³

Density (ρ)

- SI unit is <u>kg/m³</u>
 - **1** kg = 1000 (1x10³) g
 - I m³ = IM X IM X IM
 - = 100cm x 100cm x 100cm
 - = 1000000 (1X 10⁶) cm³
 - Ikg/m³ = (1x10³) g / (1x 10⁶) cm³
 - 1kg/m³ = 1x10-³ g / cm³
 - 1kg/m³ = 0.001 g / cm³
- Iml of water = Ig = I cm³ of water

Density (p) Table 10-1

- Water = 1x10³ kg/m³
- Ice = 0.917x10³ kg/m³
- Steam = 0.598 kg/m³

$\rho = \frac{m}{V}$

TABLE 10-1 Densities of Substances[†]

Substance	Density, $ ho$ (kg/m ³)
Solids	
Aluminum	2.70×10^{3}
Iron and steel	7.8×10^{3}
Copper	8.9×10^{3}
Lead	11.3×10^{3}
Gold	19.3×10^{3}
Concrete	2.3×10^{3}
Granite	2.7×10^{3}
Wood (typical)	$0.3-0.9 \times 10^{3}$
Glass, common	$2.4-2.8 \times 10^{3}$
Ice	0.917×10^{3}
Bone	$1.7-2.0 \times 10^{3}$
Liquids	
Water (4° C)	1.00×10^{3}
Blood, plasma	1.03×10^{3}
Blood, whole	1.05×10^{3}
Sea water	1.025×10^{3}
Mercury	13.6×10^{3}
Alcohol, ethyl	0.79×10^{3}
Gasoline	0.68×10^{3}
Gases	
Air	1.29
Helium	0.179
Carbon dioxide	1.98
Water (steam) (100° C)	0.598

Density (ρ) Table 10-1

- Specifies a temperature and pressure
- Negligible effect on solids and liquids, more pronounced with gases

$$\rho = \frac{m}{V}$$

TABLE 10-1 Densities of Substances[†]

Substance	Density, ho (kg/m ³)
Solids	
Aluminum	2.70×10^{3}
Iron and steel	7.8×10^{3}
Copper	8.9×10^{3}
Lead	11.3×10^{3}
Gold	19.3×10^{3}
Concrete	2.3×10^{3}
Granite	2.7×10^{3}
Wood (typical)	$0.3-0.9 \times 10^{3}$
Glass, common	$2.4-2.8 \times 10^{3}$
Ice	0.917×10^{3}
Bone	$1.7-2.0 \times 10^{3}$
Liquids	
Water (4° C)	1.00×10^{3}
Blood, plasma	1.03×10^{3}
Blood, whole	1.05×10^{3}
Sea water	1.025×10^{3}
Mercury	13.6×10^{3}
Alcohol, ethyl	0.79×10^{3}
Gasoline	0.68×10^{3}
Gases	
Air	1.29
Helium	0.179
Carbon dioxide	1.98
Water (steam) (100° C)	0.598

Density (ρ)

Example: A certain material has a mass of 11,700kg and a volume of 1.5m³. What is the material?

$\rho = \frac{m}{V}$

TABLE 10-1 Densities of Substances[†]

Substance	Density, ρ (kg/m³)
Solids	
Aluminum	2.70×10^{3}
Iron and steel	7.8×10^{3}
Copper	8.9×10^{3}
Lead	11.3×10^{3}
Gold	19.3×10^{3}
Concrete	2.3×10^{3}
Granite	2.7×10^{3}
Wood (typical)	$0.3-0.9 \times 10^{3}$
Glass, common	$2.4-2.8 \times 10^{3}$
Ice	0.917×10^{3}
Bone	$1.7-2.0 \times 10^{3}$
Liquids	
Water (4° C)	1.00×10^{3}
Blood, plasma	1.03×10^{3}
Blood, whole	1.05×10^{3}
Sea water	1.025×10^{3}
Mercury	13.6×10^{3}
Alcohol, ethyl	0.79×10^{3}
Gasoline	0.68×10^{3}
Gases	
Air	1.29
Helium	0.179
Carbon dioxide	1.98
Water (steam) (100° C)	0.598

Density (ρ)

- Example: A certain material has a mass of 11,700kg and a volume of 1.5m³. What is the material?
- ρ = m/v = (11,700kg)/(1.5m³)
- ρ = 7.8x10³ kg/m³
- The object is iron or steel

$\rho = \frac{m}{V}$

TABLE 10-1 Densities of Substances[†]

Substance	Density, ρ (kg/m³)
Solids	
Aluminum	2.70×10^{3}
Iron and steel	7.8×10^{3}
Copper	8.9×10^{3}
Lead	11.3×10^{3}
Gold	19.3×10^{3}
Concrete	2.3×10^{3}
Granite	2.7×10^{3}
Wood (typical)	$0.3-0.9 \times 10^{3}$
Glass, common	$2.4-2.8 \times 10^{3}$
Ice	0.917×10^{3}
Bone	$1.7-2.0 \times 10^{3}$
Liquids	
Water (4° C)	1.00×10^{3}
Blood, plasma	1.03×10^{3}
Blood, whole	1.05×10^{3}
Sea water	1.025×10^{3}
Mercury	13.6×10^{3}
Alcohol, ethyl	0.79×10^{3}
Gasoline	0.68×10^{3}
Gases	
Air	1.29
Helium	0.179
Carbon dioxide	1.98
Water (steam) (100° C)	0.598

Specific Gravity

 Ratio of the density of a substance to that of water at 4.0°C (1000 kg/m³)

 $SG = \frac{\rho_{object}}{\rho_{water}}$

- Once the density is found in kg/m³, you can simply divide it by 1000 (10³)
- Since it is a ratio of like units, SG is unitless

Specific Gravity

Example: What is the specific gravity of gold?

Specific Gravity

- Example: What is the specific gravity of gold?
- $\rho_{gold} = 19.3 \times 10^3 \text{ kg/m}^3$
- SG = $(\rho_{object})/(\rho_{water})$
- SG = $(\rho_{gold})/(\rho_{water})$
- SG = (19.3x10³ kg/m³)/(1x10³ kg/m³)
- SG = 19.3

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - □ *ρ* = ?

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - ρ = m/V
 - V = ?

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - ρ = m/V
 - $V = m/\rho$
 - ρ_{AL} = ?

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - $\rho = m/V$
 - $V = m/\rho$
 - $\rho_{AL} = 2.7 \times 10^3 \text{ kg/m}^3$
 - V = (100kg)/(2.7x10³ kg/m³)
 - V = 3

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - ρ = m/V
 - $V = m/\rho$
 - $\rho_{AL} = 2.7 \times 10^3 \text{ kg/m}^3$
 - V = (100kg)/(2.7x10³ kg/m³)
 - V = 0.037 m³ or 3.7x10⁻² m³

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - V = 0.037 m³ or 3.7x10⁻² m³
 - How many cm³?

- How much volume would 100kg of aluminum occupy?
 - m = 100kg
 - V = 0.037 m³ or 3.7x10⁻² m³
 - How many cm³?
 - $V = 3.7 \times 10^{-2} \text{ m}^3 \times 10^6 \text{ cm}^3 / 1 \text{ m}^3$
 - V = 3.7x10⁴ cm³

What is the mass of 3m³ of gold?
V = 3m³
p = ?

- What is the mass of 3m³ of gold?
 - V = 3m³
 - $\rho = m/V$
 - m = ?

- What is the mass of 3m³ of gold?
 - V = 3m³
 - $\rho = m/V$
 - $m = \rho V$
 - $\rho_{Au} = ?$

- What is the mass of 3m³ of gold?
 - V = 3m³
 - $\square \rho = m/V$
 - $m = \rho V$
 - $\rho_{Au} = 19.3 \times 10^3 \text{ kg/m}^3$
 - m = (19.3x10³ kg/m³) x (3m³)
 - m = ?

- What is the mass of 3m³ of gold?
 - V = 3m³
 - $\rho = m/V$
 - $m = \rho V$
 - $\rho_{Au} = 19.3 \times 10^3 \text{ kg/m}^3$
 - m = (19.3x10³ kg/m³) x (3m³)
 - m = 5.79x10⁴ kg

What are the four states of matter?

- What are the four states of matter?
- How do the four states of matter differ from one another?

- What are the four states of matter?
- How do the four states of matter differ from one another?
- What is density?

- What are the four states of matter?
- How do the four states of matter differ from one another?
- What is density?
- How do you solve problems involving density?

- What are the four states of matter?
- How do the four states of matter differ from one another?
- What is density?
- How do you solve problems involving density?
- What is specific gravity?

- What are the four states of matter?
- How do the four states of matter differ from one another?
- What is density?
- How do you solve problems involving density?
- What is specific gravity?
- How can you determine the specific gravity of a given substance?

QUESTIONS?

Homework

#1-6

Summary Video: <u>Hydroelectric</u>