

DEVIL PHYSICS

THE BADDEST CLASS ON CAMPUS APPHYSICS

GIANCOLI LESSON 1-7 TO 1-8 ORDER OF MAGNITUDE: RAPID ESTIMATING DIMENSIONS AND DIMENSIONAL ANALYSIS

Introductory Video

Powers of 10 - Scales of the Universe

Objectives

- Quickly estimate the answer to a complicated problem to within a factor of 10 .
- Use dimensional analysis to convert units and to check solutions.
- Find important facts in your textbook.

Order of Magnitude

- Order of magnitude often refers to a number's power of 10
- Avagadro's number is 6.02×10^{23}, it's order of magnitude would be 10^{23}

Order of Magnitude Estimating

- Round all numbers to one significant digit before performing operations.
- Find an order of magnitude estimate for

$$
8.376 \times 10^{-9} \div 1.6472 \times 10^{5}
$$

Order of Magnitude Estimating

- Rounding all numbers to one significant digit before performing operations.
- Find an order of magnitude estimate for

$$
\begin{aligned}
& 8.376 \times 10^{-9} \div 1.6472 \times 10^{5} \\
& 8 \times 10^{-9} \div 2 \times 10^{5}
\end{aligned}
$$

Order of Magnitude Estimating

- Rounding all numbers to one significant digit before performing operations.
- Find an order of magnitude estimate for

$$
\begin{aligned}
& 8.376 \times 10^{-9} \div 1.6472 \times 10^{5} \\
& 8 \times 10^{-9} \div 2 \times 10^{5} \\
& (8 \div 2) \times 10^{-9-5}=4 \times 10^{-14} \approx 10^{-14}
\end{aligned}
$$

Order of Magnitude Estimating

- Rounding all numbers to one significant digit before performing operations.
- Find an order of magnitude estimate for

$$
\begin{aligned}
& 8.376 \times 10^{-9} \div 1.6472 \times 10^{5} \\
& 8 \times 10^{-9} \div 2 \times 10^{5} \\
& (8 \div 2) \times 10^{-9-5}=4 \times 10^{-14} \\
& \text { Actual }=5.499 \times 10^{-14}
\end{aligned}
$$

Dimensional Analysis

- Two main uses
- Converting units
- Meters to feet
- m/s to mi/hr
- Cancelling units in an equation
- Drive $60 \mathrm{mi} / \mathrm{hr}$ for 3 hours
- $60 \mathrm{mi} / \mathrm{Fr} \times 3 \mathrm{hr} / 1=180 \mathrm{mi}$

Dimensional Analysis

- Simplify

Dimensional Analysis

- Simplify

$$
\begin{aligned}
& \frac{6}{15}=\frac{3 * 2}{3 * 5}=\frac{3}{3} * \frac{2}{5}=1 * \frac{2}{5}=\frac{2}{5} \\
& \frac{6}{15}=\frac{3 * 2}{3 * 5}=\frac{2}{5}
\end{aligned}
$$

Dimensional Analysis

- Simplify

Dimensional Analysis

- Simplify

$$
\begin{aligned}
& \frac{7 x y^{3}}{28 a^{4} b^{2}} \propto \frac{4 a^{2} b^{3}}{3 x^{3} y^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& b \\
& 3 a^{2} x^{2} y
\end{aligned}
$$

Dimensional Analysis

- Conversion factors - inside front cover, pg. 2

$$
\begin{aligned}
& 3 f t=1 y d \\
& 1 \mathrm{~m}=3.281 \mathrm{ft} \\
& 1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=14.7 \mathrm{lb} / \mathrm{in}^{2}
\end{aligned}
$$

Dimensional Analysis

- Conversion factors - inside front cover, pg. 2
$3 f t=1 y d$
$1 m=3.281 \mathrm{ft}$
$1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=14.7 \mathrm{lb} / \mathrm{in}^{2}$

$$
\frac{3 f t}{1 y d}=\frac{1 y d}{3 f}=1
$$

$$
\frac{1 m}{3.281 f t}=\frac{3.281 f t}{1 m}=1
$$

$$
\frac{1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{14.7 \mathrm{lb} / \mathrm{in}^{2}}=\frac{14.7 \mathrm{lb} / \mathrm{in}^{2}}{1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}=1
$$

Dimensional Analysis

- Identity Property of Equality says we can multiply any value by 1 and get the same value
- 117ft x $1 \mathrm{yd} / 3 \mathrm{ft}=39 y d s$
- $17 y d s \times 3 f t / 1 y d=$

$$
\begin{aligned}
& \frac{3 f t}{1 y d}=\frac{1 y d}{3 f}=1 \\
& \frac{1 \mathrm{~m}}{3.281 \mathrm{ft}}=\frac{3.281 \mathrm{ft}}{1 \mathrm{~m}}=1 \\
& \frac{1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{14.7 \mathrm{lb} / \mathrm{in}^{2}}=\frac{14.7 \mathrm{lb} / \mathrm{in}^{2}}{1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}=1
\end{aligned}
$$

Dimensional Analysis

- If you travel 25 mm in one second ($25 \mathrm{~mm} / \mathrm{s}$), how many centimeters do you travel in one minute (cm/min)?

Dimensional Analysis

- If you travel 25 mm in one second ($25 \mathrm{~mm} / \mathrm{s}$), how many centimeters do you travel in one minute (cm/min)?

$\frac{25 \mathrm{~m} \mathrm{~m}}{\mathrm{~m}} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~m}} \times 60 \mathrm{~s} \quad=\frac{150 \mathrm{~cm}}{1 \mathrm{~min}}=150 \mathrm{~cm} / \mathrm{min}$
 ls 10man
 1 min
 1 min

Dimensional Analysis

- If you travel 25 mm in one second ($25 \mathrm{~mm} / \mathrm{s}$), how many centimeters do you travel in one minute (cm/min)?

$\frac{25 \mathrm{~mm}}{1 \mathrm{~s}} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=\frac{150 \mathrm{~cm}}{1 \mathrm{~min}}=150 \mathrm{~cm} / \mathrm{min}$ $1 \mathrm{~s} \quad 10 \mathrm{~mm} 1 \mathrm{~min} \quad 1 \mathrm{~min}$

- What if you wanted to know how many minutes it took to travel 1 cm ?

Dimensional Analysis

- If you travel 25 mm in one second ($25 \mathrm{~mm} / \mathrm{s}$), how many centimeters do you travel in one minute (cm/min)?

$\frac{25 \mathrm{~mm}}{1 \mathrm{~s}} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=\frac{150 \mathrm{~cm}}{1 \mathrm{~min}}=150 \mathrm{~cm} / \mathrm{min}$ $1 \mathrm{~s} \quad 10 \mathrm{~mm} 1 \mathrm{~min} \quad 1 \mathrm{~min}$

- What if you wanted to know how many minutes it took to travel 1 cm ?
$\frac{150 \mathrm{~cm}}{1 \min }=\frac{1 \mathrm{~min}}{150 \mathrm{~cm}}=\frac{1}{150} \mathrm{~min} / \mathrm{cm}=6.67 \times 10^{-3} \mathrm{~min} / \mathrm{cm}$
$o r$
$(150 \mathrm{~cm} / \mathrm{min})^{-1}=6.67 \times 10^{-3} \mathrm{~min} / \mathrm{cm}$

Dimensional Analysis

- Solving problems
- Atmospheric pressure is 14.7 psi (lb/in²). How much force in lbs is exerted on a 3 sq yd area?

Dimensional Analysis

- Solving problems
- Atmospheric pressure is 14.7 psi (lb/in²). How much force in lbs is exerted on a 3 sq yd area?

$1 y d=36 i n$
 $1 y d^{2}=36^{2} i n^{2}=1296 i^{2}$

$$
\frac{14.7 l b s}{i n^{2}} x \frac{1296 i{ }^{2}}{1 y d^{2}} x \frac{3 y d^{2}}{1}=5.72 \times 10^{4} l b s
$$

INFORMATION IN THE TEXTBOOK

Math in Physics

Textbook Scavenger Hunt

- You are going to be shown a series of questions
- First person to raise their hand and answer correctly gets a shot at a Homework Pass

Math in Physics

Textbook Scavenger Hunt

- What is the resting mass of an electron in kg?

Math in Physics

Textbook Scavenger Hunt

- What is the resting mass of an electron in kg?
- $9.11 \times 10^{-31} \mathrm{~kg}$ (inside front cover)

Math in Physics
 Textbook Scavenger Hunt

New Book Only

Math in Physics
 Textbook Scavenger Hunt

Inside back cover

Math in Physics

Textbook Scavenger Hunt

- What is the value of one henry in terms of its base units?

Math in Physics

Textbook Scavenger Hunt

- What is the value of one henry in terms of its base units?
- $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~A}^{2}\right)$ (inside front cover, pg 2)

Math in Physics

Textbook Scavenger Hunt

- What is the value of one henry in terms of its base units?
- $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~A}^{2}\right)$ (inside front cover, pg 2)
- What does the variable "A" stand for in this derived unit?

Math in Physics

Textbook Scavenger Hunt

- What is the value of one henry in terms of its base units?
- $1 \mathrm{~kg} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~A}^{2}\right)$ (inside front cover, pg 2)
- What does the variable "A" stand for in this derived unit?
- Ampere (electric current), (footnote)

Math in Physics

Textbook Scavenger Hunt

- What is the outer shell electron configuration for Ra?

Math in Physics

Textbook Scavenger Hunt

- What is the outer shell electron configuration for Ra?
- 7s² (inside back cover)

Math in Physics

Textbook Scavenger Hunt

- What is the answer to problem \#15 in chapter 4 ?

Math in Physics

Textbook Scavenger Hunt

- What is the answer to problem \#15 in chapter 4 ?
- New Book - $2.5 \mathrm{~m} / \mathrm{s}^{2}$, down (page A-28)
- Old Book - a $\geq 2.2 \mathrm{~m} / \mathrm{s}^{2}$

Math in Physics

Textbook Scavenger Hunt

- What is the formula for the surface area of a right circular cone?

Math in Physics

Textbook Scavenger Hunt

- What is the formula for the surface area of a right circular cone?

- (New Book - inside back cover)

Math in Physics

Textbook Scavenger Hunt

- Without using a calculator, find the tangent of 19°.

Math in Physics

Textbook Scavenger Hunt

- Without using a calculator, find the tangent of 19°.
- 0.344
- New book (pg. A-9)
- Old book (inside back cover)

Math in Physics

Textbook Scavenger Hunt

- What is the half-life of Einsteinium?

Math in Physics

Textbook Scavenger Hunt

- What is the half-life of Einsteinium?
- New Book - 471.7 days (pg. A-15)
- Old Book - 275.7 days (pg. 1067)
- Why the difference?

Math in Physics

Textbook Scavenger Hunt

- What is the half-life of Einsteinium?
- New Book - 471.7 days (pg. A-15)
- Old Book - 275.7 days (pg. 1067)
- Why the difference?
" New Book - Einsteinium 252
- Old Book - Einsteinium 254

Math in Physics

Textbook Scavenger Hunt

- What is the Law of Sines?

Math in Physics

Textbook Scavenger Hunt

- What is the Law of Sines?

- Old Book - (page 1045)

Math in Physics

Textbook Scavenger Hunt

- 25-point bonus question: Determine the thickness of one page of your book in micrometers using a ruler.

Math in Physics

Textbook Scavenger Hunt

- 25-point bonus question: Determine the thickness of one page of your book in micrometers.

$$
\begin{aligned}
& \frac{33 \mathrm{~mm}}{(946+58+26) p g s / 2}=6.4 \times 10^{-2} \mathrm{~mm} \\
& =6.4 \times 10^{-5} \mathrm{~m} \\
& =64 \mu \mathrm{~m}
\end{aligned}
$$

Review: Can You

- Quickly estimate the answer to a complicated problem to within a factor of 10 ?
- Can you use dimensional analysis to convert units and to check solutions?
- Find important facts in your textbook?

Orders of Magnitude Perspective on Life

Order of Magnitude

Planets and Stars

DEVIL PHYSICS

QUESTIONS?

Homework

- \#24-30, 32-33
- Be sure to state the assumptions you make for each problem

