AP Physics

Name: \qquad

Period: \qquad Date: \qquad

AP EXAM		CHAPTER TEST	
50 Multiple Choice - 45 Single Response - 5 Multi-Response	$90 \mathrm{~min}, 1$ point each	25 Multiple Choice - 22 Single Response - 3 Multi-Response	45 min
Free Response - 3 Short Free Response - 2 Long Free Response	90 min - 13 min ea, 7 pts ea - 25 min ea, 12 pts ea	Free Response - 2 Short Free Response - 1 Long Free Response	45 min - 12 min ea, 7 pts ea - 20 min ea, 12 pts ea

CHAPTER 6 TEST REVIEW

MULTIPLE CHOICE

1. (__/1) What is the work done by friction on a 15 kg object pulled horizontally in a straight line for 15 meters, if the coefficient of friction between the object and the surface is given by $\mu_{\mathrm{k}}=0.4$?
a. -59 J
b. -91 J
c. -145 J
d. -590 J
e. -890 J
2. How much work must be done on a 27.5 kg object to move it 18 m up a 30° incline?
a. 4800 J
b. 4200 J
c. 2400 J
d. 250 J
e. 430 J

3. According to the above distance vs. force (parallel) graph, what is the work done in this process as the object moves from 2 m to 8 m ?
a. 1650 J
b. 3300 J
c. 1900 J
d. 1750 J
e. 1850 J
4. What is the work done to slow a $1.8 \times 10^{5} \mathrm{~kg}$ train car from $60 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$?
a. $3.6 \times 10^{6} \mathrm{~J}$
b. $5.8 \times 10^{8} \mathrm{~J}$
c. $3.1 \times 10^{6} \mathrm{~J}$
d. $1.4 \times 10^{8} \mathrm{~J}$
e. $2.9 \times 10^{8} \mathrm{~J}$
5. A 45 kg object slides down an uneven frictionless incline from rest without rotating. What is its speed after it travels 2.5 meters vertically?
a. $\quad 3.0 \mathrm{~m} / \mathrm{s}$
b. $4.3 \mathrm{~m} / \mathrm{s}$
c. $5.7 \mathrm{~m} / \mathrm{s}$
d. $7.0 \mathrm{~m} / \mathrm{s}$
e. $11 \mathrm{~m} / \mathrm{s}$
6. Which of the following are equivalent units for the spring constant, k ?
I. $\mathrm{N} \cdot \mathrm{m}^{2}$
II. $\mathrm{kg} / \mathrm{s}^{2}$
III. $\mathrm{J} / \mathrm{m}^{2}$
a. I only
b. II only
c. III only
d. I and II only
e. II and III only
f. I and III only
7. For an object sliding down a frictionless uneven incline without rolling, which of the following represents the change in height necessary for its velocity to double in terms of initial velocity V ?
a. $2 V^{2} g$
b. $3 \mathrm{~V} / \mathrm{g}^{2}$
c. $3 V^{2} / 2 \mathrm{~g}$
d. $3 V / 2 \mathrm{~g}$
e. $2 \mathrm{~g} / 3 V^{2}$
8. A 2.0 kg ball compresses a spring 0.10 meters and is released from rest. If the ball leaves the spring at a speed of $0.20 \mathrm{~m} / \mathrm{s}$, what is the value of the spring constant?
a. $\quad 5.0 \mathrm{~N} / \mathrm{m}$
b. $8.0 \mathrm{~N} / \mathrm{m}$
c. $12 \mathrm{~N} / \mathrm{m}$
d. $16 \mathrm{~N} / \mathrm{m}$
e. $18 \mathrm{~N} / \mathrm{m}$
9. What is the force of friction as a 12 kg object slides for 30 meters down a 30° incline at a constant velocity?
a. 59 N
b. 98 N
c. 280 N
d. 540 N
e. 1100 N
10. What is the average power necessary to move a 35 kg block up a frictionless 30° incline at 5 m / s ?
a. 68 W
b. 121 W
c. 343 W
d. 430 W
e. 860 W
11. A student weighing 700 N climbs at constant speed to the top of an 8.00 m long vertical rope in 10.0 s . What is the approximate average power expended by the student in overcoming gravity?
a. $\quad 1.10 \mathrm{~W}$
b. 87.5 W
c. 560 W
d. 875 W
e. 5600 W
12. How much energy is required to stop a car of mass 100 kg moving at a speed of $25.0 \mathrm{~m} / \mathrm{s}$?
a. $\quad 1150 \mathrm{~J}$
b. $21,150 \mathrm{~J}$
c. $31,250 \mathrm{~J}$
d. $32,250 \mathrm{~J}$
e. $42,250 \mathrm{~J}$
13. A 5.0 kg block of ice is sliding across a frozen (frictionless) pond at $2.0 \mathrm{~m} / \mathrm{s}$. A 7.6 N force is applied in the direction of motion during which time the ice block slides 15.0 m , and then the force is removed. What is the work done by the applied force?
a. +19.7 J
b. -114 J
c. +114 J
d. -735 J
e. +735 J
14. A 51 kg woman runs up a flight of stairs with an average speed of $1.0 \mathrm{~m} / \mathrm{s}$. What average power did the woman expend while she was running?
a. 0.25 kW
b. 0.51 kW
c. 0.75 kW
d. $\quad 1.00 \mathrm{~kW}$
e. 5.00 kW
15. A block of unknown mass falls from rest through a distance of 6.0 m in an evacuated tube near the surface of the Earth. What is the speed after it has fallen the 6.0 m distance?
a. $8.0 \mathrm{~m} / \mathrm{s}$
b. $\quad 11.0 \mathrm{~m} / \mathrm{s}$
c. $\quad 13.0 \mathrm{~m} / \mathrm{s}$
d. $26.0 \mathrm{~m} / \mathrm{s}$
e. $120.0 \mathrm{~m} / \mathrm{s}$

16. The above force vs. displacement graph for an object being pushed along a straight line starting from rest is as shown. After the object has moved a distance of 2.0 m , how much work has been done on it?
a. 2.5 J
b. 5.0 J
c. 10 J
d. 20 J
e. 25 J
17. A block of mass m moving with initial velocity v is subjected to a horizontal friction force on a rough surface. The coefficient of friction between the block and the surface is μ. What distance does the block travel before completely coming to rest?
a. $\frac{v}{2 \mu g}$
b. $\frac{v^{2}}{2 \mu m g}$
c. $\frac{v^{2}}{\mu g}$
d. $\frac{v^{2}}{2 \mu g}$
e. $\frac{v}{2 \mu m g}$
18. A spring needs a force of 1.0 N to compress it 0.1 m . Approximately how much work is needed to stretch it 0.4 m ?
a. 0.5 J
b. 0.8 J
c. 2.0 J
d. 4.0 J
e. 10.0 J

19. A small block above at point P is released from rest and slides along the frictionless path toward point Q as shown. At Q , which of the following best describes the speed of the block?
a. $\frac{(\mathrm{H}-\mathrm{h})^{2}}{2 \mathrm{~g}}$
b. $2 \mathrm{~g}(\mathrm{H}-\mathrm{h})$
c. $\frac{\mathrm{H}-\mathrm{h}}{2 \mathrm{~g}}$
d. $2 \mathrm{~g} \sqrt{(\mathrm{H}-\mathrm{h})}$
e. $\sqrt{2 \mathrm{~g}(\mathrm{H}-\mathrm{h})}$

20. A block of mass M is pulled by a constant force F at an angle of θ relative to the level ground as shown above, covering a distance L. Which of the following best represents the work done on the block by force F if θ is 30° ?
a. $F L \cos 30^{\circ}$
b. $M F L \cos 30^{\circ}$
c. $L \cos 30^{\circ}$
d. $\frac{F \cos 30^{\circ}}{M L}$
e. $\frac{M L \cos 30^{\circ}}{F}$
21. Which of the following objects would require the greatest amount of work to stop it?
a. an object of mass $3 M$ and speed V
b. an object of mass $2 M$ and speed $3 V$
c. an object of mass $3 M$ and speed $2 V$
d. an object of mass M and speed $4 V$
e. an object of mass $4 M$ and speed V
22. An elevator car is rising at a constant velocity. Select all of the statements that are correct.
a. The upward force of the cable is constant.
b. The kinetic energy of the elevator is constant.
c. The gravitational potential energy of the elevator is constant.
d. The acceleration of the elevator is zero.
e. The kinetic plus potential energies of the elevator is constant.
23. A watt-second is a unit of what?
a. force
b. velocity
c. power
d. energy
e. displacement
24. A 4.0 kg mass hangs on a spring and stretches it 0.05 m . The spring is then cut exactly in half. The same 4.0 kg mass, when hung on this new spring, will cause the spring to be stretched how far?
a. $\quad 0.400 \mathrm{~m}$
b. 0.020 m
c. 0.100 m
d. 0.025 m
e. 0.050 m
25. A block of mass m slides on a frictionless, horizontal table with an intitial speed v. It then hits and compresses a spring whose force constant is k and is then brought to rest but does not oscillate. Which of the following describes the maximum compression of the spring?
a. $\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}$
b. $\frac{\mathrm{mgv}}{\mathrm{k}}$
c. $\frac{\mathrm{mv}}{\mathrm{k}}$
d. $\mathrm{V} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
e. $v \sqrt{\frac{m}{k}}$

FREE RESPONSE

26. A 6 kg ball is pressed against a spring with a k value of $23 \mathrm{~N} / \mathrm{m}$, compressing it by 0.5 m . The spring is horizontal with a ledge. The length of the spring in its resting position equals the length of the ledge. The ledge is 15 m above the ground.
a. (__/2) What is the elastic potential energy initially?

Ground
b. (__/2) What is the gravitational potential energy when the ball leaves the spring?
c. (__/1) What is the gravitational potential energy when the ball hits the ground?
\qquad
\qquad
\qquad
\qquad
d. (__14) Find the magnitude of the velocity vector when the ball hits the ground.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e. (__14) How far from the base of the ledge will the ball land? (think projectile motion)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
27. A child pulls a 20.0 kg sled (on which a 4.0 kg box sits) from rest along a straight path on a level surface. The child exerts a force of 60.0 N on the sled at an angle of 30° above the horizon as shown above. The coefficient of kinetic friction between the sled and the surface is 0.22 .

a. (__/2) On the diagram below, draw and label a free-body diagram for the system as it is pulled along the surface.

b. (__/2) Calculate the normal force exerted on the sled.
\qquad
\qquad
\qquad
\qquad
c. (__/2) Calculate the acceleration of the sled.
\qquad
\qquad
\qquad
\qquad
d. (__/2) Calculate the net work done on the system as the sled moves a distance of 7.0 m .
\qquad
\qquad
\qquad
\qquad
\qquad
e. (__/2) Determine the average power developed by the net force acting on the sled during the 7.0 m pull.
\qquad
\qquad
\qquad
\qquad
\qquad
28. A toy gun contains a spring of spring constant $k=250.0 \mathrm{~N} / \mathrm{m}$. The spring is initially compressed 4.0 cm (top diagram) and then released to propel a bullet of mass 10.0 g horizontally. The bullet loses contact with the spring the moment the spring reaches its equilibrium position as shown in the bottom diagram. Thereafter, the bullet travels a distance d through the barrel of the gun.

a. (__/2) Determine the amount of work done by the spring on the bullet in accelerating it to the equilibrium position.
\qquad
\qquad
\qquad
\qquad
b. (__/2) Determine the ideal speed (i.e. no air resistance or friction) the bullet should have the moment it is released from the spring at the equilibrium position.
\qquad
\qquad
\qquad
\qquad
c. (__/2) A student places a photogate assembly at the end of the barrel to measure the speed with which the bullet exits the barrel and determines it to be $4.0 \mathrm{~m} / \mathrm{s}$ after the bullet has travelled a distance $d=12 \mathrm{~cm}$. Assume that the student was not a member of Table 5 and that the photogate was placed correctly (and no, we're not changing seats today). Based on this information, calculate the force of friction between the bullet and the inside of the gun's barrel.

