IB Physics
Name: ___Answer Key
Period: ___ Date:
Score: ___ $/ 22$

Radioactive Dating Game (22 Points) ~ Answer Key

Go To: http://phet.colorado.edu/en/simulation/radioactive-dating-game
Purpose: You will use the radioactive decay rate and original-daughter element ratios of carbon-14 and uranium-238 to determine the ages of different objects.

Procedure:

1. Load PhET Radioactive Dating Game
2. Click on tab for Decay Rates
3. (1pt) Select Carbon-14. Using the graph, the estimated half-life for C-14 is \qquad years.
4. Move the bucket slider all the way to the right. This will place $1000 \mathrm{C}-14$ atoms onto the screen.
a. (1pt) Click on the Start/Stop to stop the C-14 decay as you get close to one half-life. Use the Step button to advance the decay to one half-life.

- After 1 half-life, how many C-14 atoms of the 1000 original remain? (use the simulator, don't just write down half of the original) \qquad
b. (1pt) Use the Start/Stop and Step buttons to reach two half-lives. After two half-lives, how many undecayed C-14 atoms remain?
- Calculate the percent of original undecayed C-14 atoms present after 2 half-lives? \qquad
c. (1pt) Use the Start/Stop and Step buttons to reach three half-lives. After three half-lives, how many undecayed C-14 atoms remain? \qquad
- Calculate the percent of original undecayed C-14 atoms present after 3 half-lives? \qquad
d. (2pts) Repeat Steps (a) to (d) with uranium-238.
- Estimated half-life for U-238 is \qquad years.
- After 1 half-life, how many U-238 atoms of the 1000 original remain? \qquad
- Calculate the percent of original undecayed C-14 atoms present after 2 half-lives? \qquad
- Calculate the percent of original undecayed $\mathrm{C}-14$ atoms present after 3 half-lives? \qquad
e. (1pt) Based on the results of $4 a$ to $4 d$, explain the meaning of the word "half-life" in one sentence.

5. Click on the Measurement tab.
6. Under Probe Type, select Uranium-238 and Objects. Under Choose an Object, select Rock.
7. (1pt) Click on Erupt Volcano. Let the simulation run until you reach 1 half-life. What \% of the original uranium remains? \qquad . How many years did this take? \qquad
8. Under Probe Type, select Carbon-14 and Objects. Under Choose an Object, select Tree.
9. (1pt) Click on Plant Tree. Let the simulation run
 until you reach 1 half-life. What \% of the original carbon remains? \qquad . How many years did this take? \qquad
10. (2pts) Explain why uranium-238 is used to measure the age of rocks while carbon-14 is used to measure the age of the tree trunk?
\qquad
\qquad
\qquad
\qquad
11. Click on Dating Game tab. There are objects on the surface and in the five layers containing rocks and fossils beneath the surface.
12. Select the Carbon-14 detector. Move the Geiger counter to each fossil and record the \% of original in the table below
13. Based on the percent of original, make a guess as to the age of the object and record it.
14. On the $1 / 2$ life graph, move the green arrow right or left until the \% of original matches the reading on the detector. Record the estimated
 age for each fossil in the table.
15. Repeat Steps 12 and 13 using the Uranium-238 detector to estimate the rock ages. For objects with no remaining C-14 or \boldsymbol{U}-238 radiation, use the custom setting to estimate ages. Select different half-lives until you reach the one with the least percent remaining.
16. (2pts) Using what you have learned in this activity, summarize how you can use radioactive decay to determine the ages of objects.

Table: \quad Radiometric Ages for Various Objects (9pts)

Object	Measured using C-14, U-238 or Custom Setting?	\% of Original	Measured Age
Animal Skull			
Close Living Tree			
Distant Living Tree			
House			
Dead Tree			
Bone			
Wooden Cup			
$1^{\text {st }}$ human skull			
$2^{\text {nd }}$ human skull			
Fish Bones			
Fish Fossil 1			
Rock 1			
Dinosaur Skull			
Rock 2			
Trilobite			
Rock 3			
Rock 4			
Rock 5			

ROOM FOR IMPROVEMENT

IMPROVEMENT: This lab can be improved by:
\qquad
\qquad
\qquad
\qquad

When complete, upload to Focus. Ensure your filename is "FirstInitialLastNamePerXLabName"

