		CHAPTER 9 TEST REVIEW -- MARKSCHEME						
1.	A	3.	D	5.	A	7.	A	9.
2.	C	4.	A	6.	A	8.	D	10.

11. (a) (i) one A correctly shown;
(ii) one V correctly shown;

(b) pendulum bob accelerates towards centre of circular path / OWTTE;
therefore force upwards;
that adds to tension produced by the weight;
(c) (i) evidence shown of equating kinetic energy and gravitational
potential energy;
$v=\sqrt{(2 \times 9.8 \times 0.025)}$;
$=0.70 \mathrm{~m} \mathrm{~s}^{-1}$
Allow $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ answer $0.71 \mathrm{~m} \mathrm{~s}^{-2}$.
(ii) centripetal acceleration $\left(=\frac{v^{2}}{r}\right)\left[=\frac{0.7^{2}}{0.8}\right]=0.61\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
net acceleration $=(9.81+0.61=) 10.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ or $T-m g=m \times 0.61$;
tension $=(m a=) 0.59 \mathrm{~N}$;
Allow $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ answer 0.60 N .
(d) (i)

one maximum shown and curve broadly similar to example above; amplitude falls on each side as shown;
(ii) resonance is where driving frequency equals/close to natural frequency; the frequency at the maximum amplitude of the graph;
(e) lower amplitude everywhere on graph;
with a much broader resonance peak;
maximum moves to left on graph;
Award [2] for a sketch graph.
12. (a) (i) 1.0 mm ;
(ii) 6.0 mm ;
(iii) 37 Hz ;
(iv) $0.22 \mathrm{~m} \mathrm{~s}^{-1}$;
(b) (i) ray: direction in which energy travels;
wavefront: line connecting points with same phase/displacement;
(ii) $\sin r=\frac{\sin 60}{1.4}$;
$r=38^{\circ} ;$
(iii) wavefronts continuous at boundary and parallel;
wavefronts closer together and equally spaced by eye and in the correct direction;

(c) (i) reference to superposition/interference;
waves (almost) cancel to give zero/small displacement;
where waves arrive out of phase $/ 180^{\circ}$ out $/ \pi$ out;
(ii) position of any one minimum closer to centre / minima closer together;
frequency increased so wavelength decreased / correct
explanation in terms of double-slit equation;
13. (a) (i) spreading out of light;
beyond that predicted by the geometric pattern / by the obstacle shape / OWTTE;
(ii) diagram:

central symmetrical maximum;
at least one secondary maximum on each side with smaller height no more than one third height of central maximum;
minima drawn to zero; (i.e. sitting on x-axis)
(iii) $\quad \theta=\left(\frac{\lambda}{b}=\right) \frac{620 \times 10^{-9}}{0.4 \times 10^{-3}}$;
$w=(2 D \theta=) \frac{2.0 \times 1.9 \times 620 \times 10^{-9}}{0.4 \times 10^{-3}}$;
$w=5.9 \mathrm{~mm}$;
Award [3] for bald correct answer.
(b) (i) the images can be seen separately;
(ii) diffraction occurs (at the aperture/iris of the eye);
each lamp gives rise to a diffraction pattern (at the back of the eye/on the retina);
(for distant lamps) the two diffraction patterns overlap; so that patterns cannot be distinguished / OWTTE;
14. (a) the phase between the two sources is changing all the time; there is interference/superposition between the beams of light; the interference pattern is changing too rapidly to be observed;
Award [2 max] for a response stating that sources are not coherent so no interference pattern.
(b) (i) stimulated emission of a group of atoms with a population inversion;
(a single stimulus triggers the) spontaneous production of many other photons simultaneously / OWTTE;
photons emitted have same wavelength / phase;
(ii) coherence;

1
(c) laser scans the barcode / the laser light is not reflected where the ink is dark; the reflected light is detected;
(d) distance between maxima is $(100 \times 5)=500 \mathrm{~m}$
$L=\frac{x d}{\lambda}$;
$L=\left(\frac{500 \times 200}{5}=\right) 2.0 \times 10^{4} \mathrm{~m} ;$
15. (a) (i) (light from the slits has) constant phase difference;
(ii) when two (or more) waves meet;
resultant displacement;
is sum of individual displacements;
or
when the path difference;
is an integral/half-integral multiple of the wavelength;
constructive/destructive interferences take place;
Allow amplitude for $3^{\text {rd }}$ mark.
(b) $x=\frac{\lambda d}{a}=\frac{640 \times 10^{-9} \times 2.4}{0.85 \times 10^{-3}}$;

$$
1.8 \times 10^{-3} \mathrm{~m}
$$

(c) bright fringes are less bright; dark fringes are brighter;
16. (a) $d=\frac{1}{8.00 \times 10^{5}}=1.25 \times 10^{-6} \mathrm{~m}$;
$d \sin \theta=n \lambda \Rightarrow \theta=\sin ^{-1}\left[\frac{n \lambda}{d}\right]$;
$\sin ^{-1}\left[\frac{2 \times 589 \times 10^{-9}}{1.25 \times 10^{-6}}\right]=70.5^{\circ}, \sin ^{-1}\left[\frac{2 \times 590 \times 10^{-9}}{1.25 \times 10^{-6}}\right]=70.7^{\circ}$
$70.7^{\circ}-70.5^{\circ}=0.2^{\circ}$;
(b) the lines are closer together / not clearly separate in the first order spectrum;
17. (a) light reflected from the top slide interferes with light reflected from the bottom slide;

1
(b) the light reflected from the bottom slide undergoes a π change in phase;
(c) in moving from one (bright) fringe to the next the thickness of the air film changes by $\frac{\lambda}{2}$;
in 5.0 cm number of fringes $=\frac{5}{0.940} \times 50=266 ;$
therefore diameter of hair $=133 \times 5.92 \times 10^{-7}=7.87 \times 10^{-5} \mathrm{~m}$; $=80 \mu \mathrm{~m}$

