DEVIL PHYSICS BADDEST CLASS ON CAMPUS

		CHAPTER 9 TEST REVIEW MARKSCHEN	ME	
1. 2.	A C	3. D 5. A 7. A 4. A 6. A 8. D	9). A 10. D
11.	(a)	(i) one A correctly shown;	1	
		(ii) one V correctly shown;	1	
		displacement A A A A A A A A A A A A A A A A A A A		
	(b)	pendulum bob accelerates towards centre of circular path / <i>OWTTE;</i> therefore force upwards; that adds to tension produced by the weight:	3	
	(c)	(i) evidence shown of equating kinetic energy and gravitational potential energy; $v = \sqrt{(2 \times 9.8 \times 0.025)}$;	C	
		$= 0.70 \text{ m s}^{-1}$ Allow $g = 10 \text{ m s}^{-2}$ answer 0.71 m s ⁻² .	2	
		(ii) centripetal acceleration $\left(=\frac{v^2}{r}\right)\left[=\frac{0.7^2}{0.8}\right] = 0.61 \text{ (m s}^{-2})$		
		net acceleration = $(9.81 + 0.61 =) 10.4 \text{ (m s}^{-2})$ or $T - mg = m \times 0.61$; tension= $(ma =) 0.59 \text{ N}$; Allow $g = 10 \text{ m s}^{-2}$ answer 0.60 N.	3	
	(d)	(i) A f		
		one maximum shown <u>and</u> curve broadly similar to example above; amplitude falls on each side as shown;	2	

		(ii)	resonance is where driving frequency equals/close to natural frequency; the frequency at the maximum amplitude of the graph;		
	(e)	lowe with maxi <i>Awan</i>	r amplitude everywhere on graph; a much broader resonance peak; mum moves to left on graph; rd [2] for a sketch graph.	2 max	
12.	(a)	(i)	1.0 mm;	1	
		(ii)	6.0 mm;	1	
		(iii)	37 Hz;	1	
		(iv)	$0.22 \text{ m s}^{-1};$	1	
	(b)	(i)	ray: direction in which energy travels; wavefront: line connecting points with same phase/displacement;	2	
		(ii)	$\sin r = \frac{\sin 60}{1.4};$		
			$r = 38^{\circ};$	2	
		(iii)	wavefronts continuous at boundary and parallel;		
			wavefronts closer together and equally spaced by eye and in	n	
				Z	
	(c)	(i)	reference to superposition/interference; waves (almost) cancel to give zero/small displacement; where waves arrive out of phase/180° out/ π out;	3	
		(ii)	position of any one minimum closer to centre / minima closer together frequency increased so wavelength decreased / correct explanation in terms of double-slit equation;	; 2	
13.	(a)	(i)	spreading out of light; beyond that predicted by the geometric pattern / by the obstacle shape / <i>OWTTE</i> ;	2	
		/···>			

(ii) *diagram*:

central symmetrical maximum;
at least one secondary maximum on each side with smaller
height no more than one third height of central maximum;
minima drawn to zero; (*i.e. sitting on x-axis*) 3
(iii)
$$\theta = \left(\frac{\lambda}{b} = \right) \frac{620 \times 10^{-9}}{0.4 \times 10^{-3}}$$
;
 $w = (2D\theta) = \frac{2.0 \times 1.9 \times 620 \times 10^{-9}}{0.4 \times 10^{-3}}$;
 $w = 5.9$ mm;
 $Avard [3] for bald correct answer.$
(b) (i) the images can be seen separately; 1
(ii) diffraction occurs (at the aperture/iris of the eye);
each lamp gives rise to a diffraction pattern (at the
back of the eye/on the retina);
(for distant lamps) the two diffraction pattern (soverlap;
so that patterns cannot be distinguished / *OWTTE*; 4
14. (a) the phase between the two sources is changing all the time;
there is interference system is changing too rapidly to be observed;
 $Award [2 max]$ for a response stating that sources are not coherent
so no interference pattern: a changing too production of
many other photons simultaneously / *OWTTE*;
photons emitted have same wavelength / phase; 2 max
(ii) coherence; 1
(c) laser scans the barcode / the laser light is not reflected where the ink
is dark; the reflected light is detected;
(d) distance between maxima is (100 × 5) = 500 m
 $L = \frac{xd}{\lambda}$;
 $L = \left(\frac{500 \times 2200}{5} = \right) 2.0 \times 10^4$ m; 3

15.	(a)	(i) (light from the slits has) constant phase difference;	1
		(ii) when two (or more) waves meet;	
		resultant displacement;	
		is sum of individual displacements;	3
		or	
		when the path difference;	
		is an integral/half-integral multiple of the wavelength;	
		constructive/destructive interferences take place;	
		Allow amplitude for 3 rd mark.	
	(b)	$x = \frac{\lambda d}{2} = \frac{640 \times 10^{-9} \times 2.4}{2}$:	
	(-)	$a \qquad 0.85 \times 10^{-3}$	
		1.8×10^{-3} m;	2
	(c)	bright fringes are less bright;	
		<u>dark</u> fringes are brighter;	2
16.	(a)	$d = \frac{1}{8.00 \times 10^5} = 1.25 \times 10^{-6} \mathrm{m};$	
		$d\sin\theta = n\lambda \implies \theta = \sin^{-1}\left[\frac{n\lambda}{d}\right];$	
		$\sin^{-1}\left[\frac{2 \times 589 \times 10^{-9}}{1.25 \times 10^{-6}}\right] = 70.5^{\circ}, \sin^{-1}\left[\frac{2 \times 590 \times 10^{-9}}{1.25 \times 10^{-6}}\right] = 70.7^{\circ}$	
		$70.7^{\circ} - 70.5^{\circ} = 0.2^{\circ};$	4
	(b)	the lines are closer together / not clearly separate in the first order spectrum;	1
17.	(a)	light reflected from the top slide interferes with light reflected from the	
		bottom slide;	1
	(b)	the light reflected from the bottom slide undergoes a π change in phase;	1
	(c)	in moving from one (bright) fringe to the next the thickness of the	
		air film changes by $\frac{\lambda}{2}$;	
		in 5.0 cm number of fringes = $\frac{5}{0.940} \times 50 = 266;$	
		therefore diameter of hair = $133 \times 5.92 \times 10^{-7} = 7.87 \times 10^{-5}$ m; = 80 µm	3