CHAPTER 5 TEST REVIEW -- MARKSCHEME

1. C
2. D
3. D
4. A
5. C
6. B
7. D
8. C
9. B
10. B
11. C
12. B
13. (a) in the plastic there are no free electrons;
(but) electrons can be transferred to/from the cloth (by friction)
leaving an imbalance of charge on the rod / OWTTE;
electrons can move freely in copper;
electrons transferred from/to the cloth from/to the rod;
because the body is a conductor;
will flow to/from Earth leaving the rod neutral;
(b) (i)

at least four field lines (minimum two per rod) to show overall shape of pattern;
direction of lines all away from poles;
Ignore all working outside region.
Any field lines crossing loses first mark even if accidental.
(ii) any line labelled V perpendicular to the field lines it
traverses; (judge by eye)
Ignore unlabelled lines as they could be field lines.
(c) use of $l=\frac{R A}{\rho}$; (allow if correct substitution seen - watch for use
of circumference in place of area)
$=\left(\frac{1.5 \times \pi \times[1.8]^{2} \times 10^{-8}}{1.7 \times 10^{-8}}=\right) 9.0 \mathrm{~m}$
(d) (i) the resistance of a conductor/copper/metal increases with increasing temperature;
increased power (dissipation) leads to higher temperature in the resistor/ resistor heating up;
(ii) $I=\left(\sqrt{\frac{P}{R}}=\right) \sqrt{\frac{1.0}{1.5}}$;
($=0.82 \mathrm{~A}$)
or
total resistance in circuit $=\frac{6.0}{0.82}=(7.3 \Omega)$;
internal resistance + fixed resistance $=3.3 \Omega$;
to give $R=4.0 \Omega$;
14. (a) (i) the work done per unit charge in moving a quantity of charge completely around a circuit / the power delivered per unit current / work done per unit charge made available by a source;
(ii) the ratio of the voltage (across) to the current in the conductor;
(b) (i) emf \times current;
(ii) total power is $V_{1} I+V_{2} I$;
equating with $E I$ to get result;
or
total energy delivered by battery is $E Q$;
equate with energy in each resistor $V_{1} Q+V_{2} Q$;
(c) graph X : horizontal straight line;
graph Y: starts lower than graph X;
rises (as straight line or curve) and intersects at 4.0 V ;

Do not pay attention to numbers on the vertical axis.
(d) (i) realization that the voltage must be 4.0 V across each resistor; and so emf is 8.0 V ;
(ii) power in each resistor $=3.2 \mathrm{~W}$;
and so total power is 6.4 W ;
or
current is 0.80 A ;
so total power is $8.0 \times 0.80=6.4 \mathrm{~W}$;
16. (a) (i) use of $R\left(=\frac{p l}{A}=\right) \frac{1.1 \times 10^{-6} \times 4.5}{6.8 \times 10^{-8}}$;
$72.8 \Omega(73 \Omega)$
(ii) $\frac{240^{2}}{72.8}$ / shows appropriate alternative equation;

790 W;
(iii) one-third length so E_{2} has one-third resistance of $E_{1} /$
evaluates $R(24 \Omega)$;
(same V so) $3 \times$ power of E_{1};
so total power $=4 \times \mathrm{E}_{1}=3.2 \mathrm{~kW}$;
or numerical method
current in $\mathrm{R}_{1}=\frac{728}{240}=3 \mathrm{~A}$;
current in $\mathrm{R}_{2}=9 \mathrm{~A}$;
total current $=12 \mathrm{~A}$ and total power $=3.2 \mathrm{~kW}$;
Award [3] for correct alternative working.
(iv) the power output will be less;
because the total resistance is greater in the series case;
hence the current is less and power depends on I^{2};
$P=\frac{V^{2}}{R}$;
(b) (i) concentric circles (by eye);
a minimum of three circles required;
correct direction;

(ii) current in one turn produces magnetic field in region of adjacent turn; this gives rise to force in adjacent turn which also has electric current; they attract;
17. (a) (i) ratio of potential difference to current / $\frac{V}{I}$ with terms defined;
(ii) resistance $=\frac{230^{2}}{980}$;
$=54 \Omega$;
Award [2] for bald correct answer.

Must see re-arrangement of data booklet equation or completely correct substitution as shown in second line for first mark.
(b) e.g.

switch connected so that P can be achieved; another switch connected so that $2 P$ and $3 P$ can be achieved; Award [0] if three or more switches used. Allow any correct alternative including case where single resistor is permanently connected to supply. There are many variants, this diagram is only one example.

