CHAPTER 1 TEST REVIEW -- MARKSCHEME

1. A
2. B
3. D
4. (a)
(i) no
the graph is not linear / not a straight line;
(ii) a straight horizontal line through the initial points along the T axis; a smooth curve through the remaining points ($T=4.4 \mathrm{~K}$ to 7.0 K);
5. B
6. D
7. B

B
9. D

2 The straight line and curve do not need to be joined.
(b) $\quad R=0 \Omega$;

Do not apply unit mark.
(c) (i) $4.2-4.4 \mathrm{~K}$;
(ii) 4.3 K ;
± 0.1 (K);
Allow ECF from (c)(i).
(iii) more sensitive thermometer / thermometer with a finer graduated scale / by taking resistance measurements at smaller temperature intervals;
Award [0] for electronic digital thermometer only.
(d) the data are for low temperatures well below room temperature;
no reason to assume the trend will continue to room temperature;
the data shows R varying sharply at T_{C} and another such transition might take place below room temperature;
mercury is a liquid at room temperature;
2 max
Award any other sensible answer.
11. (a) smooth curve through all the error bars;

1
(b) (i) the graph is not linear/a straight line (going through the error bars) / does not go through origin;

1
(ii) $7.7 \mathrm{~m} \mathrm{~s}^{-1}$

Accurate reading from their graph to within $\frac{1}{2}$ square.
Allow ECF from (a).
(c) (i) $\%$ uncertainty in $v=\left(\frac{0.3}{0.7}=\right)=3.9 \%$;
doubles 3.9\% (allow ECF from (b)(ii)) to obtain \%
uncertainty in $v^{2}(=7.8 \%)$;
absolute uncertainty $(= \pm[0.078 \times 59.3])=4.6$;
$\left(= \pm 5 \mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$
or
calculates overall range of possible value as $7.4-8.0$; (allow ECF)
squares values to yield range for v^{2} of 54.8 to 64 ; (allow $E C F$)
so error range becomes 9.2 hence ± 4.6; (must see this value to 2 sig fig or better to award this mark)
(ii) correct error bars added to first point ($\pm \frac{1}{2}$ square) and
last-but-one point (± 2.5 squares); (judge by eye)
(iii) a straight-line/linear graph can be drawn that goes through origin;
(iv) uses triangle to evaluate gradient; (triangle need not be shown if read-offs clear, read-offs used must lie on candidate's drawn line)
to arrive at gradient value of 1.5 ± 0.2; (unit not required) recognizes that gradient of graph is a^{2} and evaluates
$a=1.2 \pm 0.2\left(\mathrm{~m}^{\frac{1}{2}} \mathrm{~s}^{-1}\right)$;
or
candidate line drawn through origin and one data point read; correct substitution into $v^{2}=a^{2} \lambda$; (a^{2} does not need to be evaluated for full credit)
$a=1.2 \pm 0.2\left(\mathrm{~m}^{\frac{1}{2}} \mathrm{~s}^{-1}\right) ;$
Award [2 max] if line does not go through origin - allow $\frac{1}{2}$ square.
Award [1 max] if one or two data points used and no line drawn.
(v) $\quad k=9.4 \mathrm{~m} \mathrm{~s}^{-2}$; (allow ECF from (c)(iv))
12. (a) reads off R and T values correctly for at least two different coordinates on line;
shows $R T$ not constant / other sensible test e.g. R halves, T does not double;
hence hypothesis not supported;
Award [0] for bald unsupported conclusion.
(b) (i) $\lg R=a+\frac{b}{T}$ is in the form of an equation of a straight line;
the points can be joined by a straight line / graph is a straight line;
(ii) draws straight line through all error bars (judge by eye); evidence of use of line to determine gradient;
b: gradient in range 1500 to 1700 ;
a: intercept in range -1.7 to -2.3 ;
Award [2 max] for solutions where a and b are found using data points (i.e. no line used)
(iii) correctly substitutes derived values into equation, e.g. $-2.0+\frac{1570}{260}$ correct calculation from equation, e.g. $R=11000 \Omega$;
or
$\frac{1}{T}=\frac{1}{260}(=0.00385)$ and uses straight line to give correct
value for $\lg R$;
$R=11000(\pm 2000) \Omega$;

