DEVIL PHYSICS BADDEST CLASS ON CAMPUS

CHAPTER 1 TEST REVIEW MARKSCHEME						
1.	А		4. D 7.	В		
2.	В		5. B 8.	В		
3.	D		6. A 9.	D		
10.	(a)	(i)	no the graph is not linear / not a straight line;	1		
		(ii)	a straight horizontal line through the initial points along the <i>T</i> axis; a smooth curve through the remaining points ($T = 4.4$ K to 7.0 K); <i>The straight line and curve do not need to be joined</i> .	2		
	(b)	R = 0	0 Ω;	1		
		Do not apply unit mark.				
	(c)	(i)	4.2 – 4.4 K;	1		
		(ii)	4.3 K; ±0.1 (K); <i>Allow ECF from</i> (<i>c</i>)(<i>i</i>).	2		
		(iii)	more sensitive thermometer / thermometer with a finer graduated scale / by taking resistance measurements at smaller temperature intervals; <i>Award</i> [0] for electronic digital thermometer only .	1		
	(d)	the c no re the c might merc	lata are for low temperatures well below room temperature; eason to assume the trend will continue to room temperature; lata shows R varying sharply at $T_{\rm C}$ and another such transition int take place below room temperature; cury is a liquid at room temperature; rd any other sansible answer.	2 max		
11	(a)	л <i>wu</i> smou	oth curve through all the error bars:	1		
11.	(a)	(i)	the graph is not linear/a straight line (going through the	1		
	(0)	(1)	error bars) / does not go through origin;	1		
		(ii)	$7.7 \text{ m s}^{-1};$	1		
			Accurate reading from <u>their</u> graph to within $\frac{1}{2}$ square.			
			Allow ECF from (a).			
	(c)	(i)	% uncertainty in $v = \left(\frac{0.3}{0.7}\right) = 3.9\%;$			
			doubles 3.9% (allow ECF from (b)(ii)) to obtain % uncertainty in v^2 (= 7.8%); absolute uncertainty (= +[0.078 × 59.3]) = 4.6;			
			$(=\pm 5 \text{ m}^2 \text{ s}^{-2})$	3		
			or			
			calculates overall range of possible value as $7.4 - 8.0$; (allow ECF)			
	squares values to yield range for v^2 of 54.8 to 64; (allow ECF) so error range becomes 9.2 hence ±4.6; (must see this value to 2 sig fig or better to award this matrix the set of the					

	(ii)	correct error bars added to first point $(\pm \frac{1}{2}$ square) <u>and</u>			
		last-but-one point (+2.5 squares): (<i>judge by eye</i>)	1		
	(iii)	a straight-line/linear graph can be drawn that goes through origin:	1		
	(iv)	uses triangle to evaluate gradient; (triangle need not be shown if read-offs clear, read-offs used must lie on candidate's drawn line) to arrive at gradient value of 1.5 ± 0.2 ; (unit not required) recognizes that gradient of graph is a^2 and evaluates	-		
		$a = 1.2 \pm 0.2$ (m ^{1/2} s ⁻¹);	3		
		or			
		candidate line drawn through origin <u>and</u> one data point read; correct substitution into $v^2 = a^2 \lambda$; (a^2 does not need to be evaluated for full credit)			
		$a = 1.2 \pm 0.2$ (m ^{$\frac{1}{2}s-1);$}			
		Award [2 max] if line does not go through origin – allow $\frac{1}{2}$ square.			
		Award [1 max] if one or two data points used <u>and</u> no line drawn.			
	(v)	$k = 9.4 \text{ m s}^{-2}$; (allow ECF from (c)(iv))	1		
(a)	reads off <i>R</i> and <i>T</i> values correctly for at least two different coordinates on line; shows <i>RT</i> not constant / other sensible test <i>e.g. R</i> halves, <i>T</i> does not double;				
	Awa	rd [0] for bald unsupported conclusion.	3		
(b)	(i)	lg $R = a + \frac{b}{T}$ is in the form of an equation of a straight line;			
		the points can be joined by a straight line / graph is a straight line;	2		
	(ii)	 draws straight line through all error bars (judge by eye); evidence of use of line to determine gradient; b: gradient in range 1500 to 1700; c: intercent in range 17 to 23; 	4		
		a: intercept in range -1.7 to -2.3 ;	4		
		<i>Awara [2 max]</i> for solutions where a and b are jound using data points (i.e. no line used)			
	(iii)	correctly substitutes derived values into equation, e.g. $-2.0 + \frac{1570}{260}$			
		correct calculation from equation, e.g. $R = 11000 \Omega$;	2		
		or			
		$\frac{1}{T} = \frac{1}{260}$ (= 0.00385) and uses straight line to give correct			
		value for 1g K; $R = 11000 (\pm 2000) \Omega;$			

12.