DEVOL PHYSOCS
 BADDESTCLASSONCAXPUS

OPTION E TEST REVIEW

MARKSCHEME

1. (a) (i) spectral class;

Accept colour sequence.
(ii) absolute magnitude;
(b)

Star	Type of star
A	Main sequence;
B	Super Red Giant;
C	White Dwarf;
D	Main sequence;

Award [1] for each correct name.
(c) B more luminous than A ;
and has lower temperature than A;
so from the Stefan-Boltzmann law;
B has greater area (radius);
(d) use of $L=4 \pi b d^{2}$;
from the H-R diagram $L_{\mathrm{B}}=10^{6} L_{\text {Sun }}$;
therefore $\frac{L_{\mathrm{B}}}{L_{\text {sun }}}=10^{6}=\frac{7.0 \times 10^{-8} \times d_{\mathrm{B}}^{2}}{1.4 \times 10^{3}}$;
to give $d_{\mathrm{B}}=1.4 \times 10^{8} \mathrm{AU}(\approx 700 \mathrm{pc})$;
No mark is awarded for the conversion from $A U$ to $p c$.
(e) at this distance the parallax angle is too small to be measured accurately; OWTTE;

Do not accept "it's too far away"
2. (a)

Award [1] for each correct label.
(b)

Type of Universe	Relation between ρ and ρ_{0}
Open	$\rho<\rho_{0}$
Flat	$\rho=\rho_{0}$
Closed	$\rho>\rho_{0}$

Award [1] for each correct entry.
3. (a) mass;
(b) Chandrasekhar limit defines the maximum mass that a white dwarf can have; at a mass equal to the limit the core of the star is prevented from contracting further by electrons;
above this mass the electrons cannot support the core and it further contracts causing the electrons to combine with protons to form neutrons;
OWTTE
(c) pulsar;
4. (a) the universe is expanding;
(b) any sensible straight line;
(c) Slope of the graph;
(d) $T=H^{-1}$;
correct conversion of units to get $T \approx 10^{10}$ years;
5. (a) Earth \rightarrow Mars \rightarrow Jupiter \rightarrow Pluto;

All correct [2], two in the wrong place [1].
(b) Pluto \rightarrow Mars \rightarrow Earth \rightarrow Jupiter; 2 max All correct [2], two in the wrong place [1].
6. (a)

Mark the definition of p and description of its measurement along with the diagram.
Essentially diagram should:
show p;
position of Sun;
position of Earth;
then definition of $p=\frac{\text { (distance of Earth from Sun) }}{\text { (distance of star from Sun) }}$;
diagram should show Earth positions separated by about six months;
then description should mention that angle of sight is measured at these two positions such that the difference between these two angles is equal to $2 p$;

6 max
Award [6 max] for a clear description and diagram, [3] for an average and [1] for some rudimentary idea. Mark diagram and description together.
(b) $\quad d=\frac{1}{p}=\frac{1}{0.549}=1.82 \mathrm{pc}$;

$$
=1.82 \times 3.26=5.94 \mathrm{ly} ;
$$

(c) (i) the radiant power from a star;
that is incident per m^{2} of the Earth's surface;
Alternatively, define from $b=\frac{L}{4 \pi d^{2}}$ but terms must be defined to obtain the mark. definition of L;
definition of d; 2 max
(ii) $L=4 \pi d^{2} b$;
therefore, $\frac{L_{B}}{L_{S}}=\frac{d_{B}{ }^{2} b_{B}}{d_{S}{ }^{2} b_{S}}$;
$d_{S}=1 \mathrm{AU}, d_{B}=3.8 \times 10^{5} \mathrm{AU}$;
therefore, $\frac{L_{B}}{L_{S}}=(3.8)^{2} \times 10^{10} \times 2.6 \times 10^{-14}=3.8 \times 10^{-3} ; \quad 4$ max
Allow any answer between (3.0 and 4.0) $\times 10^{-3}$.
(d) (i) temperature too low for it to be a white dwarf; 1 max
(ii) luminosity too low for it to be a red giant; 1 max
7. (a) fusion;
of hydrogen to form helium; 2 max
Responses must have all three aspects correct eg "nuclear fusion" would receive [0], "hydrogen forms helium", would receive [1].
(b) the temperature must be "high enough" is adequate; 1 max
(c) the stars "run out of" hydrogen (in their cores); 1 max
(d) Award [1] each for any salient points for the two evolutionary paths post red giant stage. Award [3] "per path" up to [6 max].
The Chandrasekhar limit must be correctly noted in either (i) and/or (ii) and scores [1 max]. Mention must be made of the Chandrasekhar limit to achieve full marks; else award [1 max].

Note that the information could be presented "pictorially" as stages in the evolutionary progress.
(i) low mass stars:
helium fusion in the core pushes out the outer layers of the star
to form a planetary nebula;
with a small (collapsed) hot star at its centre - a white dwarf;
mass of the remaining core $\approx<$ Chandrasekhar limit $/ \approx 1.4 \mathrm{M}_{\text {sun }}$;
carbon fusion cannot take place;
when helium runs out the star cools;
core cannot collapse further due to "electron degeneracy pressure"; 3 max
(ii) high mass stars:
carbon fusion and fusion of heavier nuclei can take place;
mass of the remaining core > Chandrasekhar limit / > $1.4 \mathrm{M}_{\text {sun }}$;
the greater mass allows the gravitational attraction to overcome the electron
degeneracy pressure;
finally the core collapses giving a supernova and leaving behind;
either a neutron star (when the contraction / collapse is stopped
by neutron degeneracy pressure, core mass $\sim \leq 3 \mathrm{M}_{\text {sun }}$) or a black hole; 3 max
8. (a) (i) luminosity is the total power radiated by a star / source;

Do not accept $L=\sigma A T^{4}$.
(ii) apparent brightness is the power from a star received by an observer on Earth per unit area of the observer's instrument of observation;

$$
\text { Accept } b=\frac{L}{4 \pi d^{2}} \text { if } L \text { and } d \text { are defined. }
$$

(b) the surface area / size of the star changes periodically (due to interactions of matter and radiation in the stellar atmosphere);
(c) (i) at two days the radius is larger / point A ;
because then the luminosity is higher and so the area is larger;

Award [0] if no explanation is provided.

(ii) Award [1] for each relevant and appropriate comment to the process of using Cepheid variables up to [3 max] eg
Cepheid variables show a relationship between period and luminosity; hence measuring the period gives the luminosity and hence the distance (through $b=\frac{L}{4 \pi d^{2}}$);
distances to galaxies are then measured if the Cepheid can be ascertained to be within a specific galaxy;

Marks can be back credited from answer (d) (ii).
(d)
(i) $\quad b=\frac{L}{4 \pi d^{2}} \Rightarrow 1.25 \times 10^{-10}=\frac{7.2 \times 10^{29}}{4 \pi d^{2}}$;
$d=\sqrt{\frac{7.2 \times 10^{29}}{4 \pi \times 1.25 \times 10^{-10}}} ;$
$d=2.14(\pm 0.2) \times 10^{19} \mathrm{~m}$;
(ii) Award [1] for each relevant and appropriate comment to the phrase "standard candles" up to [2 max] eg
the phrase standard candle means having a source (of light) with known luminosity;
measuring the period of a Cepheid allows its luminosity to be estimated / other stars in the same galaxy can be compared to this known luminosity;
9. (a) cosmic background radiation is microwave radiation;
"filling" the universe / from all directions;
Award other relevant and appropriate comments eg "at a temperature of about 3 K or left over from the Big Bang".
(b) the Big Bang predicts an expanding universe that had a very high temperature at the beginning; during the expansion the universe is cooling down and the temperature of the radiation should fall to its present low value, (which is precisely what the cosmic background radiation measures);
or
Big Bang producing initially very short wavelength photons / em
radiation;
as the universe expands, the wavelengths become redshifted / longer (to reach current value);
(c) the redshift in the light observed from distant galaxies (indicating that they are moving away from each other) / the helium abundance in the universe which is about 25% and is consistent with a hot beginning of the universe;

Note: question asks for evidence so do not accept "universe is expanding" unless the answer mentions redshift etc.
(d) the student is wrong; space is created as the universe expands / there is no outside to the universe;

Award [0] if no explanation or incorrect explanation.

10. (a) Diagram should show
spiral arms;
central disc;
the solar system on one of the arms about a third of the way from the centre;

$$
\text { Be generous in the position - accept between } \frac{1}{4} \text { and } \frac{3}{4} \text {. }
$$

(b) $\frac{\Delta \lambda}{\lambda_{0}}=\frac{v}{c} \Rightarrow \frac{670-658}{658}=\frac{v}{c}$;
hence $v=\frac{670-658}{658} c=0.018 c=5.47 \times 10^{3} \mathrm{~km} \mathrm{~s}^{-1}$;
Award [1 max] for $\frac{670-658}{670}=0.0179$.
(c) (i) straight-line;
through origin;

(ii) relative speed of two points in the universe separated by distance d is $v=\frac{d}{T}$
where T is the age of the universe $/ \operatorname{argument}$ to show $v=\frac{d}{T}$;
$v=\frac{d}{T}=H_{0} d$ therefore $T=\frac{1}{H_{0}}$;
Award [0] for answers that just show that $T=\frac{1}{H_{0}}$ has the right units.
(iii) the Hubble constant is obtained from the slope of the graph;
11. (a) massive body of gas / gas / plasma;
giving off light / radiant energy / electromagnetic radiation etc;
Allow alternative acceptable comments.
(b) constellation:
pattern of stars as seen from Earth;
not close to one another in space;
galaxy:
large group of stars;
other detail $e g \approx 10^{10}$ stars, diameter $\approx 10^{5}$ ly etc;
Award other detail [1] for constellation or galaxy.
16. (a) apparent magnitude is a measure of (comparative) brightness as seen from Earth (with 1 being brightest and 6 being dimmest);
absolute magnitude is the apparent magnitude that the star would have if it were a fixed distance from the Earth of 10 parsecs;
(b) yes plus reason;

Note: an explanation must be provided. Award [0] for bald "yes" without an attempt at a reason. eg since apparent magnitude low (less than one) therefore one of the brightest stars.
(c) (i) distance away $=\frac{3.39 \times 10^{17}}{9.46 \times 10^{15}}=35.8 \mathrm{ly}=11.0 \mathrm{pc}$;
(ii) since this is less than 100 pc ;
the star is close enough for stellar parallax;
Award [1] for a bald answer. Also allow ecf if conversion of units is muddled.
(iii) Award [1] each relevant piece of experimental description up to [4 max]. $e g$ position of star compared with other star positions; at different times of the year;
the maximum angular variation from the mean p is recorded;
the distance (in parsecs) can be calculated using geometry $d=\frac{l}{p}$ if p is in arcseconds;

Note: watch for ecf. If the response has suggested one of the other techniques in (ii) then award full marks for appropriate descriptions.
example:
spectroscopic parallax: light from star analysed (relative amplitudes of the absorption spectrum lines);
to give indication of stellar class;
HR diagram used to estimate the luminosity;
distance away calculated from apparent brightness;
Cepheid variables: these stars' brightness vary over time; the time period of the variation is related to their luminosity; thus measurements of the time period of one star can be used to calculate its luminosity;
its distance away is calculated from maximum apparent brightness; 4 max
(d) spectral type / K / OWTTE;
thus at low end of temperature scale: OBAFGKM / Sun is G / OWTTE;
(e) (i) correct substitution into $L=\sigma \mathrm{AT}^{4}$;
to get $\mathrm{A}=\frac{3.8 \times 10^{28}}{\left(5.67 \times 10^{-8} \times 4000^{4}\right)}=2.62 \times 10^{21} \mathrm{~m}^{2}$;
(ii) use of $4 \pi \mathrm{r}^{2}=2.62 \times 10^{21} \mathrm{~m}^{2}$;
to get $r=1.44 \times 10^{10} \mathrm{~m}(=0.10 \mathrm{AU})$;
(iii) use of $\lambda_{\max }=\frac{2.90 \times 10^{-3}}{4000}$;
$=725 \mathrm{~nm} \approx 730 \mathrm{~nm} ;$
(f) red giant;
since it's big and it's red / OWTTE;
17. (a) Milky Way is a spiral galaxy with "concentration" of stars in the centre;

NGC5128 is an elliptical galaxy - form is different;
Ignore guessed references to band of dark dust outside our galaxy.
(b) (i) recession velocity is proportional to the distance away / OWTTE;

Award [0] for formula taken from data book unless symbols are defined.
(ii) a measurement to get recession velocity;
eg red shift measurement
a measurement to get distance away;
eg Cepheids
repeat procedure for many galaxies to get relationship from graph;
(c) (i) correct substitution into $v=H d$;
and correct conversion of units to get
$v=60 \times\left(\frac{15 \times 10^{6}}{3.26 \times 10^{6}}\right)=276.1 \mathrm{~km} \mathrm{~s}^{-1} \approx 300 \mathrm{~km} \mathrm{~s}^{-1} ;$
(ii) correct substitution in $T=\frac{1}{H}$;
and correct conversion of units to get
$T=0.0167 \mathrm{~km}^{-1} \mathrm{~s} \mathrm{Mpc}$
$=0.0167 \times \frac{\left(10^{6} \times 3.26 \times 9.46 \times 10^{15}\right)}{10^{3}}$
$\approx 5 \times 10^{17} \mathrm{~s}$;
Assumption that the rate of expansion has remained the same should be given credit and can replace the marking point above if a mathematical slip has been made.
18. (a) (i) the distance of both stars from the Earth are approximately the same (since they are part of the binary system);
and so apparent brightness is proportional to just luminosity;
Award [1] for use of $b=\frac{L}{4 \pi d^{2}}$ and [1] for a statement that distance is the same.
(ii) $\quad b=\frac{L}{4 \pi d^{2}}, L=\sigma A T^{4}$
$\frac{b_{B}}{b_{A}}=\frac{\frac{L_{B}}{4 \pi d^{2}}}{\frac{L_{A}}{4 \pi d^{2}}}=\frac{A_{B} T_{B}^{4}}{A_{A} T_{A}^{4}} ;$

$$
\begin{align*}
& \frac{2.0 \times 10^{-14}}{8.0 \times 10^{-13}}=\frac{T_{B}^{4}}{10^{4} T_{A}^{4}} \\
& \frac{T_{B}^{4}}{T_{A}^{4}}=250 ; \\
& \frac{T_{B}}{T_{A}}=\sqrt[4]{250}=3.97 \approx 4 ; \tag{4}
\end{align*}
$$

(b) (i)

Diagram at 5 years

line of sight from Earth
stars shown eclipsing each other; stars in correct positions;

Diagram at 10 years

line of sight from Earth

2 max 1 1
(ii) 10 years;
(iii) the total mass of the binary;

To receive the mark, it must be clear that the total mass is referred to.
23. (a) the radiation emitted by a perfect emitter / perfect absorber / cavity / emits radiation in accordance with the Planck law;
(b) wavelength $/ \lambda$;
(c)

lower intensities;
maximum shifted to the longer wavelength;
(d) $T=\frac{2.90 \times 10^{-3}}{\lambda}=\frac{2.90 \times 10^{-3}}{9.70 \times 10^{-7}}=3000 \mathrm{~K}$;
24. (a) the universe is infinite in extent;
the stars are uniformly distributed;
(b) Look for these points.
if the stars are uniformly distributed the number of stars shining their light on the Earth increases with the square of the distance from the Earth / OWTTE;
so number of stars is proportional to R^{2};
but the intensity of illumination varies as $\frac{1}{R^{2}}$;
therefore, everywhere in the universe would be equally bright;
Allow [2] for the following argument.
if universe is infinite and static;
every line of sight will end on a star so night sky is bright;
(c) light from distant galaxies is red-shifted;
(from the Doppler effect) this suggests the universe is expanding / galaxies are moving away from each other;
25. (a)

Luminosity (L) (Sun $L=1$)

Sun: to region of red giants approx luminosity $10 \rightarrow 10^{3}$, temperature $3000 \rightarrow 4000$;
luminosity stays reasonably constant as temperature increases;
Accept horizontal straight-line.
then to region of white dwarfs approx luminosity $10^{-2} \rightarrow 10^{-5}$,
temperature $10000 \rightarrow 30000$;
Star A: to super red giant region approx luminosity $10^{3} \rightarrow 10^{5}$,

Note: None of the lines needs to be straight.
(b) Look for these main points.
the Sun ends up as a white dwarf;
the Chandrasekhar limit fixes the maximum mass of a white dwarf as $1.4 \mathrm{M}_{\text {sun }}$; during the red giant and planetary nebula phases of evolution; the star can eject up to $80-90 \%$ of its original mass;
(c) hydrogen fusion is replaced / followed by helium fusion;
helium fusion is replaced / followed by carbon / oxygen / neon / sodium / silicon / sulphur fusion;
26. (a) (i) Jupiter;
(ii) Uranus;
(b) between orbits of Mars and Jupiter / $2 \mathrm{AU} \rightarrow 3 \frac{1}{2}$ AU from Sun;
(c) highly elliptical;
most of orbit outside orbits of furthest planets / large orbits;
orbits are in many different planes;
27. (a) (i) blue (- white);
(ii) $\mathrm{G}(3)$;
(b) line absorption spectra; give information on composition (of outer layers);
or:
Doppler Shift / red shift / blue shift;
gives information of speed relative to Earth / gives information as to rotational speed;
or:
intensity - wavelength distribution;
gives information on (surface) temperature;
stellar magnetic fields;
through splitting of emission spectrum lines;
Award [1] each for any two sensible comments, plus [1] for some detail on each.
29. (a) low mass stars will finish burning helium (into carbon and oxygen); and collapse to a white dwarf;
(b) high mass stars will finish burning (silicon) to iron;
and collapse into a neutron star / black hole;
2
35. (a) there is an equilibrium;
between radiation pressure and gravitational pressure / OWTTE;
2
(b) visual binary:
stars (of system) can be separated through a telescope / binoculars / OWTTE;
spectroscopic binary:
(analysis of) light spectrum (from system) reveals two different (classes of) stars;
36. (a) (class $M \Rightarrow$ low surface temperature \Rightarrow) red; $\quad 1$
(b) $\quad d(p c)=\frac{1}{p}=\frac{1}{5.0 \times 10^{-3}}=200 \mathrm{pc}$;
$200 \mathrm{pc} \times 3.26 \times 9.46 \times 10^{15}=6.2 \times 10^{18} \mathrm{~m}$;
37. (a) the intensity of illumination falls off as $1 / r^{2}$;
(since stars uniformly distributed) the number of stars seen from
Earth increases as r^{2};
therefore, the sky should be equally bright in any direction / OWTTE;
Award [1] for "in any direction, the line of sight will encounter the surface of a star \Rightarrow sky as bright as sun".
(b) the BB model leads to the idea of the expansion of the universe;
the BB model leads to the idea that the observable universe is not infinite;
Award [1] for "because the universe (stars) is not infinitely old" (universe far younger than necessary for us to see a star in every direction. Finite speed of light means that we are not receiving light from all sources) / OWTTE.

